End-capped polyfluorenes, films and devices based thereon

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Nitrogen-containing reactant

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S423000, C528S425000, C528S373000, C428S690000, C428S917000, C428S433000

Reexamination Certificate

active

06777531

ABSTRACT:

The present invention relates to end-capped polyfluorenes, films and devices based thereon.
In recent years much attention has been paid to polymers being useful for incorporation into field-effect transistors, light-emitting diodes (LEDs) and photo-voltaic devices. A wide variety of polymers have been included as active media in these electronic devices. A class of compounds that has been found to be potentially useful for such purpose are the polyfluorenes.
Various reasons support the use of polyfluorenes in these devices: First of all, polyfluorenes are displaying impressive blue-emission properties and because of this they received considerable attention with respect to their potential for inclusion into emission layers of LEDs. Several reports have demonstrated bright blue emission from polyfluorene homopolymers (A. W. Grice; D. D. C. Bradley; M. T. Bernius; M. Inbasekaran; W. W. Wu; E. P. Woo;
Appl. Phys. Lett.
1998, 73, 629; Y. Yang and Q. Pei;
J. Appl. Phys.
81, 3294 (1997)).
A second important property of polyfluorenes, in particular polyfluorene homopolymers, is their thermotropic liquid-crystalline behaviour, which allows to orient these polymers on alignment layers, for example rubbed polyimide layers (M. Grell, D. D. C. Bradley, M. Inbasekaran, E. P. Woo,
Adv. Mater.
9, 798 (1997); M. Grell, D. D. C. Bradley, X. Long, T. Chamberlain, M. Inbasekaran, E. P. Woo, M. Soliman, Acta Polym. 49, 439 (1998)). Orientation of the polymers on such alignment layers enables the emission of linearly polarized light which is particularly useful for devices such as liquid-crystal (LC) displays in which emission layers incorporating polyfluorene are being used as backlights. LEDs emitting linearly polarized light and having a dichroic ratio in emission of more than 20 and a brightness in excess of 100 cd/m
2
could be fabricated when the polyimide layers were doped with appropriate hole-transporting molecules (M. Grell, W. Knoll, D. Lupo, A. Meisel, T. Miteva, D. Neher, H. G. Nothofer, U. Scherf, H. Yasuda, Adv. Mater. 11, 671 (1999).
The efficiency of devices based on non-aligned and aligned polyfluorenes is, however, still far too low for applications. The efficiency of a bilayer device comprising a cross-linked hole-transporting layer (HTL) and an emission layer (EML) based on poly(9,9-bis(n-octyl)fluorene-2,7-diyl) (PFO) with linear octyl side-chains was only 0.25 cd/A (A. W. Grice; D. D. C. Bradley; M. T. Bernius; M. Inbasekaran; W. W. Wu; E. P. Woo;
Appl. Phys. Lett.
73, 629 (1998)). Devices with aligned polyfluorenes, using poly(9,9-bis(2-ethylhexyl)fluorene-2,7-diyl) are reported to show an even lower efficiency of approximately 0.12 cd/A (M. Grell, W. Knoll, D. Lupo, A. Meisel, T. Miteva, D. Neher, H. G. Nothofer, U. Scherf, H. Yasuda, Adv. Mater. 11,671 (1999)).
Several attempts have been made to chemically modify polyfluorenes in order to increase the device efficiency. For example Kim et al. (Macromolecular Symposia, 1999, 143, 221-230) copolymerized 2,7-diethynyl-9,9′-di-n-hexylfluorene and 2,7-dibromo-9,9′-di-n-hexylfluorene to yield poly(9,9′-di-n-hexyl-2,7-fluorenyleneethynylene). The alternating copolymer emitted blue colour with a peak maximum at 475 nm on excitation either at 340, 365 or 400 mn. The principle emission maximum shifted to 425 nm on excitation at 340 nm when the polymer was blended with polyvinylcarbazole (PVK). Light-emitting diodes (LEDs) fabricated with the alternating copolymer sandwiched between indium-tin oxide glass and Al emitted a light with a peak maximum at 550 nm. The peak maximum shifted to 425 nm when the copolymer was blended with PVK with the blending ratios between 5 to 20% of the emissive copolymer.
Colour tuning was deliberately achieved via incorporation of benzothiadiazole, perylene or anthracene moieties (Klaerner, G.; Davey, M. H.; Chen, W. D.; Scott, J. C.; Miller, R. D.;
Adv. Mater.
10, 993 (1998); M. Kreyenschmidt, G. Klärner, T. Fuhrer, J. Ashenhurst, S. Karg, W. D. Chen, V. Y. Lee, J. C. Scott, R. D. Miller,
Macromolecules
31, 1099 (1998); Y. He, S. Gong, R. Hattori, J. Kanicki,
Appl. Phys. Lett.
74, 2265 (1999)). The problem, however, with the inclusion of such chemical moieties into the polyfluorene main chain or the copolymerization with other monomers is the inevitable modification of essential properties of the main chain such as the stiffness and the geometrical shape, thereby inadvertently altering the character of the polyfluorene, e. g. its liquid-crystalline behaviour, if such had been present before any modification.
Another problem with LED-devices based on polyfluorene emission layers is that the emission spectrum of such an LED exhibits a significant contribution of longer wavelengths, particularly in the range of the red part of the spectrum (M. Grell, D. D. C. Bradley, X. Long, T. Chamberlain, M. Inbasekaran, B. P. Woo, M. Soliman;
Acta Polym.
49, 439 (1998); M. Grell, W. Knoll, D. Lupo, A. Meisel, T. Miteva, D. Neher, H. G. Nothofer, U. Scherf, H. Yasuda, Adv. Mater. 11, 671 (1999); J. Teetsov, M. A. Fox;
Journal of Materials Chemistry
9, 2117 (1999), V. N. Bliznyuk, S. A. Carter, J. C. Scott, G. Klärner, R. D. Miller, and D. C. Miller;
Macromolecules
32, 361 (1999)). The strength of this contribution changes strongly with the molecular weight and the nature of the side chains. This situation is aggravated by the fact that the alignment of the polymer in the liquid-crystalline state requires an annealing step at higher temperatures enhancing this undesired red contribution. Several attempts have been made towards a control of red-shifted emission bands. These include the synthesis of statistical (M. Kreyenschmidt, G. Klärner, T. Fuhrer, J. Ashenhurst, S. Karg, W. D. Chen, V. Y. Lee, J. C. Scott, R. D. Miller;
Macromolecules
1998, 31, 1099) or block (D. Marsitzky, M. Klapper, K. Müllen;
Macromolecules
1999, 32, 8685) copolymers, the attachment of sterically demanding groups (G. Klärner, R. D. Miller, C. J. Hawker;
Polym. Prepr.
1998, 1006) or thermal cross-linking of terminal reactive groups, e. g. benzocyclobutane ((a) E. P. Woo, M. Inbasekaran, W. Shiang, G. R. Roof;
Int. Pat. Appl.
WO97/05184 (1997); (b) M. Inbasekaran, W. Wu, E. P. Woo; U.S. Pat. No. 5,770,070 (1998)) units or unsaturated functions (e. g. styryl) (Klaerner, G.; Davey, M. H.; Chen, W. D.; Scott, J. C; Miller, R. D.;
Adv. Mater.
1998, 10, 993; G. Klärner, J.-I. Lee, V. Y. Lee, E. Chan, J.-P. Chen, A. Nelson, D. Markiewitz, R. Siemens, J. C. Scott, R. D. Miller;
Chem. Mater.
1999, 11, 1800). In most of these cases the electronic properties as well as the phase behaviour have become severely altered compared to that of the polyfluorene homopolymers. For example the synthesis of block copolymers has in fact led to an even increased contribution of undesired red-shifted emission states (D. Marsitzky, M. Klapper, K. Müllen; ibid.).
Accordingly, it is an object of the present invention to provide polymers useful for incorporation into electronic devices such as FETs, LEDs and photovoltaic devices which do not show any unwanted red-shift contribution. Particularly it is an object of the present invention to provide polyfluorenes useful for incorporation into these devices which do not show any undesired red-shift contribution. Another object of the present invention is to provide polymers, in particular polyfluorenes, that allow for the fabrication of electronic devices, in particular LEDs, FETs and photovoltaic devices with a higher efficiency. It is another object of the present invention to provide LEDs with a higher brightness, a lower onset voltage, a negligible red contribution, a better colour stability and the potential to achieve high dichroic ratios.
All these objects are solved by a polyfluorene end-capped with at least one charge-transporting moiety.
It is preferred that in such a polyfluorene the charge-transporting moiety is selected from the group comprising electron-transporting moieties, hole-transporting moieties and ion-transporting moieties, wherein, more preferably, the cha

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

End-capped polyfluorenes, films and devices based thereon does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with End-capped polyfluorenes, films and devices based thereon, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and End-capped polyfluorenes, films and devices based thereon will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3270555

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.