Enclosure for electrical package and end piece therefor

Electricity: conductors and insulators – Boxes and housings – Hermetic sealed envelope type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S737000, C361S740000, C361S747000, C361S759000, C439S946000

Reexamination Certificate

active

06365832

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an enclosure for substantially enclosing an electrical package, and an end piece coupled to one end of such enclosure. More particularly, the present invention relates to such an enclosure for enclosing and defining an electronic or IC card such as a PC card, and an end piece for the end opposite the connector end of such card.
BACKGROUND OF THE INVENTION
It has become increasingly popular to provide an electronic device with a slot for receiving a package or ‘card’ that provides additional functionality to the device. For example, in connection with portable personal computers (‘laptops’, e.g.) and other portable electronic devices, it has become commonplace to add additional functionality or the like merely by inserting a PC card such as that defined by the Personal Computer Memory Card International Association (PCMCIA) with appropriate hardware/software into a PC card slot on such computer/device. Accordingly, the computer/device can be provided with extra memory, extra processing capabilities, extra applications, and/or other features. Likewise, the computer/device can be provided with add-on hardware such as an Ethernet connection, a land-line modem, a wireless modem, a hard or floppy disk drive. To summarize, a PC card can be employed to provide a multitude of hardware and software capabilities to the computer/device.
Importantly, all PC cards are built according to standards set forth by PCMCIA. Such standards provide (among other things) physical specifications for three types of PC Cards, with additional provisions for extended cards. All three card types measure the same length and width and use a standard 68-pin connector at one longitudinal end thereof. The only difference between the card types is thickness. In particular, Type I, Type II, and Type III cards are 3.3, 5.0, and 10.5 millimeters thick, respectively. Because they differ only in thickness, a thinner card can be used in a thicker slot, but a thicker card cannot be used in a thinner slot. The card types each have features that fit the needs of different applications. Type I PC Cards are typically used for memory devices such as RAM, Flash, OTP, and SRAM cards. Type II PC Cards are typically used for I/O devices such as data/fax modems, LANs, and mass storage devices. Type III PC Cards are used for devices whose components are thicker, such as rotating mass storage devices. Extended cards allow the addition of components that must remain outside the system for proper operation, such as antennas for wireless applications.
Typically, a PC card or the like includes an enclosure that defines the aforementioned length, width, and thickness of such card. Such enclosure also defines an interior within which the functional elements of such card reside. Such enclosure may be of a metallic nature to act as an electromagnetic shield. As was noted above, a standard
68
-pin connector is provided at one longitudinal end of the enclosure to mate with a corresponding connector within the PC card slot defined in the computer I device. The opposing longitudinal end of the enclosure may be tapered in the thickness direction for ease in grasping during insertion into and retrieval from a slot, among other things.
However, tapering such opposing longitudinal end results in the disadvantage that the full thickness of the PC card is not available at such opposing end for accommodating higher profile elements at such opposing end. For example, such higher profile elements may include one or more connectors such as an RF connector, a multi-pin connector, or the like for accepting an appropriately configured inserted mating connector. Accordingly, it is at least some times preferable to not taper the opposing end in the thickness direction.
Typically, the enclosure is formed by combining upper and lower half shells, thereby defining the interior within which the aforementioned functional elements and reside. Also typically, such functional elements are sandwiched between the upper and lower half shells during the formation of such enclosure. Further typically, the lateral edges of the half shells contact and are secured to one another to form the enclosure and retain the functional elements between the half shells. In the case where the opposing end is tapered, the corresponding longitudinal edges of the half shells may also contact and be secured to one another.
However, in the case where the opposing end is not tapered, and especially where access must be had through the opposing end to a connector or the like within the enclosure, the corresponding longitudinal edges of the half shells should not be contacted and secured to one another. Instead, the enclosure should be provided with an end piece or cap to cover such opposing end, and such end piece or cap should be provided with appropriate apertures for the aforementioned access, if necessary.
It is known to form such end piece or cap by providing each of the half shells with an appropriately configured half end piece, where the half end pieces combine during combining of the half shells to form a whole end piece. Such half end pieces may be constructed from a material amenable to a heat or sonic welding process, and thus are secured to one another by way of such heat or sonic welding process. However, such heat or sonic welding process has been found to be undesirable in that such process could and does damage functional elements already sandwiched within the enclosure by the half shells. Moreover, such half end pieces can be different from one another, based on the apertures provided, and thus can interfere with a desire to form the enclosure with identical half shells.
Accordingly, a need exists for an end piece for such enclosure that is formed as a substantial unitary body separate from the half shells, whereby heat or sonic welding need not be employed to form the enclosure, and whereby the half shells forming the enclosure can be substantially identical.
SUMMARY OF THE INVENTION
The present invention satisfies the aforementioned need by providing an enclosure for an electrical package and an end piece therefor. The enclosure comprises a pair of half shells combined to define an interior cavity within which the electrical package resides. The interior cavity as defined by the half shells is open at one end thereof. The end piece is mounted to the half shells as combined to cover the open end of the interior cavity and close the electrical package within the enclosure at such open end.


REFERENCES:
patent: 5470237 (1995-11-01), Byczek et al.
patent: 5548483 (1996-08-01), Feldman
patent: 5754404 (1998-05-01), Biermann et al.
patent: 5760998 (1998-06-01), Berberich et al
patent: 5920460 (1999-07-01), Oldendorf et al.
patent: 5940275 (1999-08-01), Laity

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Enclosure for electrical package and end piece therefor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Enclosure for electrical package and end piece therefor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enclosure for electrical package and end piece therefor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2847896

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.