Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Particulate form
Reexamination Certificate
1999-10-01
2002-12-31
Webman, Edward J. (Department: 1617)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Particulate form
C424S500000, C424S501000, C424S439000, C424S488000, C424S410000, C424S409000
Reexamination Certificate
active
06500463
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a continuous process for producing shelf-stable, controlled release, discrete, solid particles which contain an encapsulated and/or embedded component such as a heat sensitive or readily oxidizable pharmaceutically, biologically, or nutritionally active component.
BACKGROUND OF THE INVENTION
In encapsulating a component in a matrix, the matrix material is generally heated to a sufficiently high temperature to provide a plasticized mass which facilitates embedding or coating of the component. Upon cooling, the matrix material hardens or becomes solidified and protects the encapsulant from undesirable or premature reaction. However, heating of the matrix to plasticize it or to form a melt may deleteriously affect or decompose the encapsulant as well as the matrix material. Additionally, the mixing or high shear used to disperse the encapsulant uniformly throughout the plasticized matrix material may likewise adversely affect the matrix material or encapsulant. Furthermore, the use of high temperatures to plasticize or melt the matrix material may cause evaporation and loss of the encapsulant. The addition of liquids to the matrix material to reduce its viscosity and to facilitate mixing may require excessive drying or evaporation of the plasticizing liquid for the attainment of a formable composition capable of being formed into discrete, substantially uniform pieces. Furthermore, removal of the plasticizing liquid may adversely expand the product, decrease its density, and make the encapsulated component more susceptible to attack or more easily released. These problems involved with the removal of liquid encapsulant are even more pronounced when the commercially available form of the encapsulant is dissolved or dispersed in a liquid. While the liquid may be removed prior to encapsulation by drying, expensive methods such as spray drying, freeze drying, and vacuum drying are generally needed to avoid decomposition of the encapsulant by drying at elevated temperatures. Additionally, the dried encapsulants may be dusty and may cause adverse health effects when handled in concentrated forms or when inhaled.
The production of expanded products is disclosed in European patent publication nos. EP 0465364 A1 (published Jan. 8, 1992) and EP 0462012 A2 (published Dec. 18, 1991), U.S. Pat. No. 3,962,416 to Katzen and U.S. Pat. No. 3,786,123 to Katzen. The two European patent publications disclose the production of an anti-obesity food and a method for making it by extrusion of starches with fatty acids into an expanded product having densities between 0.1 and 0.3 g/cm
3
. U.S. Pat. No. 3,962,416 to Katzen discloses an expanded product which contains at least one nutrient and one gelatinized starch.
U.S. Pat. No. 3,786,123 to Katzen discloses a method for producing encapsulated nutrients using extrusion temperatures of between 250° F. and 400° F. and extrusion pressures of between 200 psi to 2500 psi. A high protein encapsulating agent containing up to 40% starch may be used. The starch is gelatinized and extruded into an expanded product.
However, in producing a product having controlled release or delayed release, excessive expansion or puffing may result in too rapid release properties or may undesirably expose an encapsulant to destructive reactions. For example, an edible composition for delivering encapsulated pharmaceutically or nutritionally active components or for a non-edible agricultural product for delivering biocides or herbicides, it is desirable that the products have a substantially spherical shape and a high density. Such products exhibit a substantially low ratio between surface area and volume and thus minimize or prevent surface related destructive reactions that occur upon exposure to air or oxygen and light. The spherical shapes and high densities also minimize the surface which would be available to expose embedded material which is not encapsulated. Furthermore, for edible products for delivering pharmaceutically or nutritionally active components, it is desirable that the products are capable of being consumed or swallowed without chewing or substantially no chewing. Avoiding the need for mastication, further assures that the products reach the digestive tract without substantial enzymatic hydrolysis in the mouth. Furthermore, it helps to control or reduce dissolution of the product in gastric juice and to control the release of the embedded or encapsulated components in the stomach and/or in the intestine.
International patent publication no. WO 92/00130 (published Jan. 9, 1992) discloses a continuous process for obtaining an encapsulated, biologically active product in a starchy matrix. A biologically active agent and starch are mixed before extrusion and extruded as a blend, with the encapsulant or biologically active agent being heated together with the starch. Alternatively, a core material to be encapsulated may be added and blended with an aqueous dispersion of starch after the starch and water have been subjected to an elevated temperature sufficient to gelatinize the starch. The extrusion process, it is disclosed, exposes the mix to high shear mechanical action at a temperature above the gelatinization temperature of the starch. The use of extrusion barrel temperatures of between about 58° C. and 98° C. are disclosed. While these barrel temperatures may be above the gelatinization temperature of starch, the extruder utilized has barrel sections that are only three l/d long. The screw speeds utilized, between 400 rpm and 200 rpm, result in a very short residence time of the blend inside the extruder and barely allow heating up of the starch water mix. As a result, the temperatures obtained are generally too low to obtain substantial gelatinization of native starches. Additionally, the barrel temperatures used are particularly too low for substantial gelatinization of high amylose starch which generally gelatinizes at temperatures substantially above 100° C., for example at 125° C. The use of extrusion barrel temperatures which are not sufficiently high to substantially or completely gelatinize the starch may not form a sufficiently continuous, plasticized and homogeneous matrix for effective embedding or encapsulation.
In addition, the use of relatively low extrusion temperatures, high speed mixing, and a high viscosity starch composition generally requires a high mechanical energy input. High shear is directly related to high specific mechanical energy, which in turn increases the molecular destructurization and dextrinization of starch. Breakdown of the starch molecules, and in particular the amylopectin, increases the solubility of the extruded starch composition in aqueous systems as described in P. Colonna, et al., “Extrusion Cooking of Starch & Starchy Products,”
Extrusion Cooking
, C. Mercier, et al. pp. 247-319, AACC, St. Paul, Minn. (1989) and F. Meuser, et al, “A Systems Analytical Approach To Extrusion,”
Food Extrusion Science
&
Technology
, ed. J. Kokini, Dekker Publ., pp. 619-630 (1992). Increased solubility of the extruded starch in aqueous systems decreases the stability of the product against moisture and subsequently diminishes or shortens the protection and controlled release of the embedded or encapsulated substances. In addition, subjecting the encapsulant to the same high shear and high temperature conditions to which the starch is subjected may adversely affect the encapsulant by at least partially destroying it or decomposing it into unknown solid or volatile substances.
Pregelatinized starch is used in numerous applications in the food industry as a swelling agent and for accelerated and extended water absorption in foods such as soups, sauces, instant puddings, baby food, and thickening agents. However, it has been found that the use of pregelatinized starch or the use of starch as the only matrix material during extrusion cooking generally results in a matrix which releases the encapsulant too quickly. It has been found that the penetration of water into a pure starch m
General Mills Inc.
Hollander Barry I.
O'Toole John A.
Taylor Douglas J.
Webman Edward J.
LandOfFree
Encapsulation of sensitive components into a matrix to... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Encapsulation of sensitive components into a matrix to..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Encapsulation of sensitive components into a matrix to... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2994720