Interactive video distribution systems – Operator interface
Reexamination Certificate
1999-05-19
2004-09-14
Faile, Andrew (Department: 2611)
Interactive video distribution systems
Operator interface
C725S063000, C725S138000, C725S144000, C345S215000, C345S215000
Reexamination Certificate
active
06792615
ABSTRACT:
FIELD OF INVENTION
This invention relates in general to the automation and distribution of programming information including video, audio, text, and graphics to a large number of program viewers located over a large geographic area. More particularly, it is directed to an integrated, automated production and distribution system for providing customized delivery of digital streaming media to particular geographic areas, markets, groups and/or individuals via remotely controlled origination nodes.
BACKGROUND OF THE INVENTION
Prior to the late seventies, television broadcasting was primarily a static industry whose production and distribution techniques remained largely unchanged since the days of Milton Berle and “I Love Lucy.” Even with the advent of color television, the techniques through which ABC, CBS and NBC produced and distributed its network programming remained the same. Using analog and/or manually operated cameras, video tape recorders, playback machines, switchers, lighting and editing systems, these networks generated national programming combined with national commercial content. Programming was distributed to the networks' owned and operated, as well as affiliated TV stations, via national and regional terrestrial microwave systems operated by companies such as AT&T, WTCI, MRC and Western Union/CPI.
Sectionalization of the national TV Networks; i.e., delivery, of programming and/or commercial content intended for a specific region and/or time zone, was accomplished by creating ring networks out of the national microwave distribution system by ordering part time “bridging circuits” and “rolling over” numerous tape machines at strategic locations in the national microwave network. For example, programming with the appropriate commercial insertions would be transmitted to the stations between New York City and the Chicago TV affiliate. In Chicago, two manually operated tape machines with commercial content and/or programming destined for the TV affiliates between Chicago and Washington, D.C., as well as for TV affiliates to the west of Chicago, provided the facilities to create two regional Network feeds. The first manually controlled tape machine would “roll over” the New York feed and transmit via a “bridging circuit” connected to microwave facilities on the national network between Chicago and Washington, D.C. In turn, the Washington, D.C. affiliate would have another manually controlled tape machine with commercial and program content destined for the TV affiliates in the Southeast ready to “roll over” the Chicago feed. Meanwhile, the second video tape machine at the Chicago TV affiliate would also “roll over” the New York feed and replace it with commercial and/or program content destined for the TV affiliates to the west of Chicago. Likewise, this technique would be used repeatedly in locations such as Birmingham, Wichita, Denver and other such cities across the network until the programming was sectionalized as desired across the network.
In order to perform switches between national and regional programming without noticeable interruption to the home television viewers, a period of available time was allocated for manually controlled local commercial insertion otherwise know as “local avails.” At each of the networks' local affiliates these “local avails” were used as a “window” in which sectionalization of the network could occur.
In addition, AT&T and the other terrestrial microwave providers supported these scheduled sectionaliztions of the various national TV Networks by manually executing time-based switching of the microwave network during these scheduled “local avails.” For example, an AT&T network technician would literally run between the racks of communications equipment at certain bridging locations with a patch cord in order to provide the necessary “bridging circuits” during the predetermined “local avail.”
With the advent and commercialization of satellite technology in the United States in the 1970's, ABC, CBS, NBC and the Public Broadcasting System all converted their terrestrial microwave distribution systems to satellite distribution during the early 1980's. In general, this decision was made due to the superior economics and flexibility of satellite technologies. As a result, new techniques and support systems needed to be developed in order to accomplish sectionalization and/or customization of the national TV networks.
As a result, the television broadcasting system generally changed from a serial, terrestrial network connecting stations to each other one-by-one via microwave towers, to a point-to-multi-point network where each sectional group was connected directly to the network origination earth station via a satellite link. Accordingly, each sectional group required a separate transponder to receive its designated commercial and programming content. Moreover, just as with a serial network configuration, each of the Network's TV affiliates continued to use its “local avail” as a “window” in which to switch between national, regional and local programming.
In addition, the transition of the U.S. terrestrial TV networks to satellite distribution created the first requirements for computer automation, management, coordination, monitoring, and control systems. The challenge of meeting these requirements resulted in further developments in technology. For example, computerized booking, scheduling and financial management of satellite and telecommunications facilities, origination earth stations, transponders and affiliate receive earth stations, local channels, long distance terrestrial facilities, to name a few, were developed. These systems were typically developed to (1) control and manage the inventory of telecommunications facilities to avoid “overbooking” two users for the same facility, (2) allow allocation of facility charges to be applied to the various network users both internal and external to the respective networks, and to (3) analyze usage to better manage existing facilities, as well as to plan future facilities. The transmission automation systems could also be used to switch facilities and thereby reroute video, audio and data services.
In general, the satellite network control systems installed in the early 1980's and used by the likes of ABC, CBS, NBC and PBS have changed little since their original installation. As the computer technology became more widely available and used computerized network control systems were developed. In the respective broadcast centers of these networks in New York and Washington, D.C., a master computer system capable of transmitting low speed data via either the Vertical Blanking Interval (“VBI”) or a Single Channel Per Carrier (“SCPC”) transport system sends customized data streams to TV affiliate satellite receivers. This transmitted data instructs the various TV affiliate earth stations to perform a number of functions such as: (1) configuring the TV affiliate earth station to receive the appropriate TV programming by instructing it to point at a specific satellite and tune to a particular transponder and/or center frequency, (2) updating time based schedules and synchronize affiliate clocks, (3) updating network restoral procedures; i.e., instructions as to what to do if the inbound data channel and/or programming channel is lost due to a catastrophic satellite failure, (4) periodic reporting instructions back to the master computer system via terrestrial data channels such as X.25 packet nets and later frame relay and/or ATM, (5) reporting back to the master computer system as to the status of various components of the affiliate earth station and control system.
Another condition created by the transition to a point-to-multi-point, satellite distribution system was that unauthorized access or “piracy” of programming became an issue. Nearly impossible in a terrestrial, point-to-point microwave system, satellite distribution enabled the “piracy” of programming out of market from major league sporting events, premium cable as well as pay-per-view (PPV) prog
Ernst Peter A.
Heinen John A.
Olson Gary H.
Rowe Lynn T.
Faile Andrew
McDonnell & Boehnen Hulbert & Berghoff
New Horizons Telecasting, Inc.
Tran Hai V.
LandOfFree
Encapsulated, streaming media automation and distribution... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Encapsulated, streaming media automation and distribution..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Encapsulated, streaming media automation and distribution... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3242126