Active solid-state devices (e.g. – transistors – solid-state diode – Housing or package – Insulating material
Reexamination Certificate
1999-11-15
2002-10-29
Talbott, David L. (Department: 2827)
Active solid-state devices (e.g., transistors, solid-state diode
Housing or package
Insulating material
C257S729000, C257S730000, C257S788000, C257S793000, C174S050510, C174S050510
Reexamination Certificate
active
06472739
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to microelectromechanical devices and associated fabrication methods and, more particularly, to an encapsulation process for microelectromechanical structures and associated microelectromechanical devices.
BACKGROUND OF THE INVENTION
Microelectromechanical structures (MEMS) and other microengineered devices are presently being developed for a wide variety of applications in view of the size, cost and reliability advantages provided by these devices. Many different varieties of MEMS devices have been created, including microgears, micromotors, and other micromachined devices that are capable of motion or applying mechanical force. These MEMS devices can be employed in a variety of applications including hydraulic applications in which MEMS pumps or valves are utilized, optical applications which include MEMS light valves and shutters, and electrical applications which include MEMS relays.
MEMS devices have relied upon various techniques to provide the force necessary to cause the desired mechanical motion within these microstructures. For example, electrostatic actuators have been used to actuate MEMS devices. See, for example, U.S. patent application Ser. No. 09/320,891, assigned to MCNC, also the assignee of the present invention, which describes MEMS devices having electrostatic microactuators, the contents of which are incorporated herein by reference. In addition, controlled thermal expansion of an actuator or other MEMS component is another example of a technique for providing the necessary force to cause the desired mechanical motion within MEMS devices. See, for example, U. S. Pat. No. 5,909,078 and U.S. patent application Ser. Nos. 08/936,598; and 08/965,277, assigned to MCNC, also the assignee of the present invention, which describe MEMS devices having thermally actuated microactuators, the contents of which are incorporated herein by reference.
Once a MEMS device has been fabricated, the entire device must undergo subsequent packaging steps to process the MEMS device into a usable form. These packaging steps may include, for instance, wafer dicing, assembly, wire bonding, and encapsulation processes. A typical MEMS device is unlikely to survive these packaging steps due to the extensive manipulation of the device during the individual processes. Since the actuators used in MEMS devices incorporate mechanical motion to achieve the desired function of the particular MEMS device and since a MEMS device may include additional mechanically sensitive components, MEMS devices generally present a particularly challenging packaging problem.
Conventional integrated circuit encapsulation packaging is typically a conformal surface coating. However, conformal coatings are not particularly suited to packaging a MEMS device since it difficult to provide the necessary clearances about the mechanically sensitive components of the MEMS device.
Another approach to packaging MEMS devices has been to fabricate a separate “lid” structure which is then bonded to the MEMS die prior to packaging. However, a disadvantage of the separate lid approach is that, when the lid is bonded to the die at the wafer level, the entire MEMS die is covered, thereby preventing physical or electrical access to the MEMS die in subsequent packaging processes.
Thus, there exists a need for an encapsulation process for a MEMS device which is compatible with and capable of protecting the mechanically sensitive components of a MEMS device during subsequent packaging steps. Preferably, the encapsulation process for a MEMS device utilizes conventional semiconductor fabrication techniques and equipment such that special measures are not required. Further, the encapsulation process is desirably capable of selectively encapsulating portions of the MEMS device while leaving other portions free of the encapsulant which, for example, do not require encapsulation or which must be externally accessible in subsequent packaging processes. In addition, the encapsulation process for a MEMS device is preferably cost-efficient and allows conventional low-cost packaging techniques to be used following encapsulation of the MEMS device.
SUMMARY OF THE INVENTION
The above and other needs are met by the present invention which, in one embodiment, provides a method of encapsulating microelectromechanical (MEMS) structures formed on a substrate prior to packaging thereof. First, a sacrificial material is deposited over the substrate to cover at least a portion of the MEMS structure. An encapsulation material is then deposited over the sacrificial material such that the encapsulation material covers at least a portion of the sacrificial material over the MEMS structure. The sacrificial material is subsequently removed such that the encapsulation material forms a shell spaced apart from and covering the MEMS structure and permits the intended operation of the MEMS structure.
According to another advantageous embodiment of the present invention, the step of depositing a sacrificial material may further comprise depositing a removable photoresist on the substrate to cover at least a portion of the MEMS structure where, in some cases, the photoresist completely covers the MEMS structure. Further, a method of encapsulating MEMS structures may include the step of forming a pattern associated with the sacrificial material to selectively define regions of the MEMS structure that are covered during subsequent operations. The sacrificial material may also define regions of the MEMS structure that are to be protected by the encapsulation material.
Advantageous embodiments of the present invention also include the step of defining at least one opening in the sacrificial material following deposition thereof for exposing a portion of the substrate, the exposed portion of the substrate comprising, for example, an anchor point. In addition, the step of depositing an encapsulation material may further comprise depositing an encapsulation material over the sacrificial material such that the sacrificial material engages the MEMS substrate at an exposed portion thereof, wherein the encapsulation material may comprise, for example, a photoimagable epoxy having a sufficient thickness to form an encapsulating shell about the MEMS structure. After the encapsulation material has been deposited on the sacrificial layer, at least one opening in the encapsulation material is then defined to expose a portion of the sacrificial material. Some embodiments of a method for encapsulating MEMS structures include the step of forming a pattern associated with the encapsulation material to selectively define regions of the MEMS structure that are covered by the encapsulation material during subsequent operations. Generally, the step of depositing an encapsulation material comprises depositing an encapsulation material over the sacrificial material after the sacrificial material has been patterned and portions thereof removed.
In some instances, the step of removing the sacrificial material may further comprise removing the sacrificial material such that the encapsulation material forms a shell spaced apart from and covering at least a portion of the MEMS structure such that the intended operation of the MEMS structure is permitted, wherein the sacrificial material is generally removed from areas of the MEMS structure that are not desired to be in contact with the encapsulation material. In addition, the step of removing the sacrificial material may further comprise removing the sacrificial material from portions of the MEMS structure that are to be externally accessible following the deposition of the encapsulation material. Prior to the step of removing the sacrificial material, embodiments of a method of encapsulating MEMS structures include the step of selectively insolubilizing the encapsulation material to make it more durable and impervious to subsequent processing steps. Thus, a method of encapsulating MEMS structures formed on a substrate prior to packaging thereof generally comprises the step of depositing an en
Dudley Bruce W.
Wood Robert L.
Chambliss Alonzo
JDS Uniphase Corporation
Myers Bigel & Sibley & Sajovec
Talbott David L.
LandOfFree
Encapsulated microelectromechanical (MEMS) devices does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Encapsulated microelectromechanical (MEMS) devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Encapsulated microelectromechanical (MEMS) devices will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2986112