Enabling smart logging for webtone networks and services

Multiplex communications – Diagnostic testing – Fault detection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S248000, C370S249000, C370S250000, C370S252000, C370S410000, C370S522000, C714S712000, C714S750000

Reexamination Certificate

active

06704287

ABSTRACT:

TECHNICAL FIELD
The invention relates generally to enhanced multi-carrier telecommunications service assurance and network testing and, in particular, to a method and apparatus for enabling multimedia services troubleshooting across multi-carrier telecommunications networks with multi-transport technologies and capabilities.
BACKGROUND OF THE INVENTION
Webtone is an electronic signal that announces the immediate availability of multimedia services including telephony, web pages, electronic mail (e-mail), facsimiles, remote access to business services and any other kind of digitized information over a Public Carrier Network. Digitized information for such services are, or will become, accessible from wireline and wireless terminals. These services are supported by the fiber Synchronous Optical Network (SONET) core network with feature rich edge switching nodes that form the base for a Webtone network. A significant challenge is to provide the testing and troubleshooting mechanisms for the Webtone network for ensuring quality assurance for such services. Quality of service (QoS) is an important issue and it is one of the major hurdles to be overcome before such services gain widespread acceptance. Reliability of the network in general and availability of enhanced services are critical to Webtone success.
Webtone requires an integrated interworking of predominantly voice networks such as the Public Switched Telephone Network (PSTN), predominantly data networks such as the Internet, and narrowband/broadband integrated services digital networks (ISDN). This requirement has inspired the development of protocols such as Voice over Internet Protocol (IP), IP over Asynchronous Transfer Mode (ATM), Voice over ATM, IP over Synchronous Optical Network (SONET), etc. These developments have also promoted the concept of an Internet Phone™, which is an implementation of Voice over IP. Providing QoS is an issue for voice services across an IP-based network for Internet Phones™. The issue of QoS is further complicated when Voice over IP is passed to a Plain Ordinary Telephone Service (POTS) network, or vice versa. Troubleshooting multimedia services such as voice, data, video or audio in multi-carrier telecommunications networks is an issue that has not been addressed.
An expanding telecommuting workforce requires that these issues be addressed now more than ever. There is also a need to integrate services troubleshooting and QoS provisioning across multi-carrier networks to provide seamless telecommunications in a converging marketplace.
The Public Switched Telephone Network
In the Public Switched Telephone Network (PSTN), user telephone terminals and facsimile machines are connected to telephone switches. The telephone switches (which include Central Offices (COs) for wireline communications and Mobile Switching Centers (MSCs) for wireless communications) are specialized computerized switches engineered for the provision of intelligent telephone services to subscribers. The switches are interconnected through trunks, on which voice and voice-grade data are carried. The switches are also interconnected through a common channel signaling (CCS) network, typically a Signaling System No. 7 (SS7) network, which is a specialized fault-tolerant data communications network, principally used for signaling messages that control call setup and maintenance.
The PSTN is a multi-carrier network in which a plurality of interconnected and inter-working networks cooperate to deliver services. The networks in the PSTN include analogue Plan Ordinary Telephone Services (POTS) networks, narrowband (NB) Integrated Services Digital Network (ISDN), and broadband (BB) ISDN networks, based on Asynchronous Transfer Mode (ATM) transport facilities. A simple two-party call in most cases involves several telephone switches; one or more of which may be located in any one of the different networks. In combination, the switches form a complex distributed processing environment for the delivery of telecommunications services such as voice, data, video, and audio. All of the switches are presently enabled to cooperate in the delivery to customers of certain basic services, such as the provision of dial tone, ringing on a called line, and establishing connections between two or more parties.
The Internet
The Internet is a network of elements such as IP hosts, hubs, intelligent hubs, IP switches, routers, bridges, gateways, network information databases, etc. All these elements have computing abilities and utilize protocols conforming to the Open System Interconnections (OSI) model of which the Transport Control Protocol over Internet Protocol (TCP/IP) is a widespread implementation. The Internet core is provided over redundant data links.
All information transported over the Internet, whether data, video, voice, or audio is parceled into TCP/IP packets, which are routed to an intended destination. The Internet is therefore a packet switched network. There is currently no provision for deterministic routing of TCP/IP packets over the Internet and, no provision for a guaranteed throughput of TCP/IP packets. The way the packets propagate over the Internet is by a store and forward method in which TCP/IP packets are sent between the network elements making up the Internet and are buffered at each network element in a queue awaiting processing. There is no guarantee of transmission of individual packets over the Internet but there are provisions for the re-transmission of incorrectly received packets and/or packets that are lost or discarded along the way.
The inherent non-deterministic routing of TCP/IP packets over the Internet complicates troubleshooting multimedia services. There are, however, troubleshooting applications available for verifying connectivity between network elements in the Internet. These applications provide connectivity checks at the physical layer, the link layer, and the network layer. These Internet applications provide network-wide information or service-specific information.
The Internet may be accessed using dedicated connections. Nonetheless, the most common access is provided by an Internet Gateway (IP GWY) at an edge of the Internet with links to the PSTN. The IP GWYs perform protocol conversion as required, to convert time division multiplexed data from the PSTN to TCP/IP format, and vice versa.
Multi-media Webtone Services Assurance
Webtone services such as Voice over Internet (VoIP) or Data over Internet (DoIP), and many others require much more than basic calls processing. The implementation of these services requires that specialized service applications be developed to operate on equipment from different vendors, and in a multi-carrier network that includes narrowband and broadband (NB/BB) carriers. Intelligent Network Elements (INEs) such as the service control points (SCPs), Intelligent Peripherals (IPs), service Gateways (GWYs), or Service Nodes (SNs) execute service applications and provide instructions to the NB/BB wireline or wireless switches for completing service calls. Each switch is involved only in executing basic call processing, which is interrupted at standardized breakpoints when a specialized service application needs be executed. On encountering such a breakpoint, the switch issues a service request to an INE that has the service application (e.g., an SCP in a narrowband intelligent telephone network or services server for narrowband (NB) and Broadband (BB) Internet/PSTN interworking), and waits for instructions.
For some services, the INE may initiate a call on its own by instructing switches to establish necessary connections between a calling and called parties. In addition to executing the service application, other INEs can perform certain switching functions (such as bridging calls) as well as a set of specialized functions (such as playing announcements, voice recognition and text-to-speech conversation). The SCPs are typically connected to switches via an NB/BB SS7 signaling network, while Service Nodes (SNs), and Intelligent Peripherals generally communicate with the s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Enabling smart logging for webtone networks and services does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Enabling smart logging for webtone networks and services, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enabling smart logging for webtone networks and services will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3206059

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.