EMI/RFI shielding gasket

Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Composite having voids in a component

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S319100, C428S314800, C428S317100, C427S247000

Reexamination Certificate

active

06309742

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to the field of gaskets. More particularly, this invention relates to gaskets for electrical apparatus which may generate or which may be adversely affected by electromagnetic interference (EMI) and/or radio frequency interference (RFI) from gaps in shielding or conductive housings.
BACKGROUND OF THE INVENTION
Electromagnetic interference has been defined as undesired conducted or radiated electrical disturbances from an electrical or electronic apparatus, including transients, which can interfere with the operation of other electrical or electronic apparatus. Such disturbances can occur anywhere in the electromagnetic spectrum. Radio frequency interference is often used interchangeably with electromagnetic interference, although it is more properly restricted to the radio frequency portion of the electromagnetic spectrum, usually defined as between 10 kilohertz (kHz) and 100 gigahertz (GHz).
A shield is defined as a metallic or otherwise electrically conductive barrier inserted between a source of EMI/RFI and a desired area of protection. Such a shield may be provided to prevent electromagnetic energy from radiating from a source. Additionally, such a shield may prevent external electromagnetic energy from entering the shielded system. As a practical matter, such shields normally take the form of an electrically conductive cover or enclosure, which is electrically in contact with either: the ground trace on a PCB (printed circuit board); or another mating cover (with the PCB completely surrounded by and grounded to, the two cover halves). Any unwanted EMI/RFI energy is thereby dissipated harmlessly to ground. Most such enclosures or shields are open on at least one side, or are provided with access panels, doors and/or removable lids. Thus, the shields have at least one removable interface, which is typically used to allow the user to gain access to the electronic circuitry underneath.
Gaps that form at the removable interface (typically between the shield and the PCB or between the two shield halves) provide an undesired opportunity for electromagnetic energy to leak into the shielded system. The gaps also can interfere with electrical current running along the surfaces of the shield, as well. For example, if a gap is encountered, the impedance of the gap is such that electromagnetic energy may radiate from an opposing side of the gap, much like a slot antenna. A device used to fill such gaps is known as a gasket. As used herein, a “gasket” is defined as a device that fills a gap in a shielded system at a removable interface, such as between a shield and a PCB, or between two shields, with a PCB enclosed therein, for example.
Various configurations of gaskets have been developed over the years to conformably fill these gaps and to effect the least possible disturbance of the ground conduction currents. Each seeks to establish an electrically conductive path across the gaps—the higher the conductivity, the better. However, there are inevitable compromises between: the ability of the gasket to smoothly and thoroughly engage and conform to the surface of the shield and its mating surface; the conductive capacity of the gasket; the gasket's resilience; the gasket's softness; the ease of mounting the gasket; and the cost of manufacturing and installing the gasket.
Presently, many electronic devices, such as but not limited to: pocket pagers, cellular phones, laptop computers and wireless local area networks (LANs), are constructed using metallized plastic injection-molded shields which are not manufactured to exact tolerances. Therefore, the aforementioned gaps in these systems can be quite significant. Typically in such devices, mating shield members incorporate a snap-together method of closure, or in other instances, they utilize a limited number of light gauge screws. Accordingly, most electronic devices having metallized plastic injected molded housings, cannot deliver substantial closure force to assemble a housing/PCB system together. Any EMI gasket that is incorporated into such electronic devices must therefore be deformable under a low compression force. If the gasket material is too hard, it will not conform to the irregular surfaces between the housing and cover, and therefore, the gaps will not be completely sealed. These gaps can sometimes be so large that slots are created, from which electromagnetic energy can escape. Additionally, a gasket material that is difficult to compress can result in bending or bowing of the shield and PCB, which can result in many other mechanical problems, such as stress relaxation in the plastic shield, problems with solder joints cracking on the bowed PCB, etc. Therefore, it is imperative that the gasket material is soft enough to conform to irregular surfaces when: the fastener spacing is large, the stiffness of the shield(s) and/or PCB is very low, and when only a small amount of force is available from the snaps or screw fasteners.
Conventionally, conductive particle-filled silicone elastomers have been utilized as conductive gaskets, to reduce EMI and RFI. However, such materials tend to be relatively hard (typically Shore A hardness of 45 or greater). Because of their hardness, these conductive elastomers are not well suited for use as a gasket in a device having a shield that is assembled with a substantially low closure force. Additionally, these conductive elastomers are difficult to manipulate when formed or die-cut into complicated gasket patterns, with narrow gasket sections. Since cellular phone EMI shields, for example, utilize lightweight, flexible and extremely small plastic parts, an alternative to hard, conductive elastomers is desired in the industry.
Other EMI/RFI shielding gaskets have been proposed which incorporate a conductive fabric or mesh which surrounds a soft, conformable foam material. Examples of such gaskets are disclosed in U.S. Pat. Nos. 5,028,739; 5,115,104; 4,857,668; 5,045,635; 5,105,056; 5,202,526; and 5,294,270. Although the gaskets disclosed in the foregoing U.S. patents may be deformable under a low compression force, these gaskets do not have continuous conductivity throughout the material. These gaskets are typically constructed of an inner, non-conductive foam support material that is wrapped with a metallized, conductive fabric, rendering only the outer fabric surface conductive. Continuous conductivity, throughout the entire cross-section of the material, is required for proper EMI shielding. Because they are not continuously conductive, these gasket materials cannot therefore be die-cut into arbitrary, complex shapes to function as an EMI/RFI gasket. The ability to die-cut a material (into such a complex shape) is especially important for multi-cavity enclosures with narrow walls, typically less than 3 mm in width.
U.S. Pat. No. 4,931,479 describes a conductive polyurethane foam material, which is rendered conductive by filling a base material with conductive particles and then “foaming” the base material. One suggested conductive particle is carbon. Although such a conductive polyurethane foam material may be effective for use in certain applications (particularly ESD—electrostatic discharge applications), it is not sufficiently conductive for use as an EMI/RFI shielding gasket in the frequency range from about 10 MHz to about 26 GHz. Additional suggested conductive fillers are metallic particles such as silver, nickel, copper, nickel-plated graphite, silver-plated glass, silver-plated nickel, and silver-plated copper, for example. However, for such a shielding gasket to be effective in the frequency range from about 10 MHz to about 26 GHz, the base material would probably have to be loaded with such a high density of metallic conductive particles that the gasket would probably exhibit poor mechanical properties. Such mechanical properties might be softness, recoverability, tensile strength, etc.
U.S. Pat. No. 3,666,526 discloses an electrically conductive metallized porous foam. In theory, such a material could pot

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

EMI/RFI shielding gasket does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with EMI/RFI shielding gasket, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and EMI/RFI shielding gasket will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2579867

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.