Communications: electrical – External condition vehicle-mounted indicator or alarm – Transmitter in another vehicle
Reexamination Certificate
2001-06-18
2003-09-02
Hofsass, Jeffery (Department: 2632)
Communications: electrical
External condition vehicle-mounted indicator or alarm
Transmitter in another vehicle
C340S903000
Reexamination Certificate
active
06614362
ABSTRACT:
BACKGROUND
The field of invention relates to the transmission of signals for emergency vehicles. More specifically, this present invention relates to an improved method for transmitting signals from an emergency vehicle to nearby commuter vehicles.
Various methods and devices have been used to transmit a signal or warning from an emergency vehicle to nearby vehicles. Sirens are the most common that we all experience. While driving all of us, frequently hear the siren blast of a fire truck or ambulance. Another method involves sending a signal from the emergency vehicle to the traffic light at an upcoming intersection. The traffic light is programmed to turn red in all directions, when the traffic light receives the signal.
Sirens have several disadvantages. The volume of the siren limits the distance at which the siren can be heard. Excessive volume can be damaging to the ears of commuters, pedestrians, and the occupants of the emergency vehicle. Sirens have an additional disadvantage, because the commuter has difficulty discerning how many emergency vehicles are in the area or knowing from which direction they are approaching. One emergency vehicle sounding a siren can pass by the commuter vehicle. The commuter may erroneously assume that this is the only emergency vehicle travelling in the vicinity, thus the commuter vehicle resumes travel on the road. A second emergency vehicle then approaches with the travel path of the second emergency vehicle blocked by the commuter.
Sending a signal from the emergency vehicle to a traffic light, also has disadvantages. The emergency vehicle transmits a signal to the traffic light at an upcoming intersection. The traffic light responds by turning the traffic signal light red in all directions. Commuter traffic is halted, allowing the emergency vehicle to pass easily through the intersection. The cost of retrofitting all of the traffic signals in a city is borne by the city government. The costs can be prohibitive thus most cities decline to use the method.
Installing the transmitter device on each emergency vehicle is only a small portion of the cost. Each traffic light must have a receiver installed. Installing the receiver on new traffic lights can be expensive. The costs are even more prohibitive when the existing traffic lights need to be retrofitted with a receiver. Coordinating the halting of traffic during the installation can be very time consuming and disruptive to commuters. Retrofitting existing traffic signal systems is seldom accomplished, because of the expense and coordination required for implementing this system.
An effective emergency vehicle alert system is very important. Many lives are lost each year in vehicle accidents involving emergency vehicles. A speeding emergency vehicle traveling to treat an injury, is just another accident waiting to happen. Methods and systems are needed that will minimize the risk of the emergency vehicle incurring a collision with a commuter vehicle, which results in injury or death. An emergency vehicle alert system that transmitted a signal further than the hearing range of a siren, would allow commuter vehicles to pull to the side of the road sooner. The roads would be less obstructed and the emergency vehicle could travel faster, reaching the accident scene sooner. More lives would be saved, if the injuries and heart attacks were treated sooner.
Today, vehicles are constructed with a much quieter interior, than in past years. The quiet vehicles make it harder to hear outside noises, including the blare of a siren. More people live in urban cities and fewer people reside in sparsely traveled rural areas. The cities are densely populated and noisy, which hinders the ability of drivers to adequately hear and discern the siren, above the loud background noises. Additionally, cities have large, tall buildings that block the transmission of the siren sound. The siren sound tends to be funneled down the street. The siren sound does not effectively go around corners. Sound waves can bounce off of buildings and travel around corners to a certain limit, but sound waves do have a tendency to continue travel in the preexisting unobstructed direction.
Global positioning Systems (GPS) are commonly used for indicating the geographic position of your own vehicle. The GPS provides a reference from satellites, which allows the system to accurately show the location of your vehicle. To date, the GPS has not been effectively incorporated into an emergency vehicle alert system.
Therefore, there is a need for an emergency vehicle alert system that will transmit a signal farther than the hearing range of a siren. Furthermore, there is a need for a system, where all of the cost is not absorbed by the municipality. Additionally the emergency vehicle alert system should provide an indication when more than one emergency vehicle is present in the vicinity. Also the system should provide an indication of the relative position of the commuter vehicle in relation to the emergency vehicle.
SUMMARY
The emergency vehicle alert system (EVAS) fulfills the objective of transmitting a signal farther than the hearing range of a siren. The signal can be sent using one of many commonly available communication frequencies. Communication frequencies can transmit for many miles, in contrast to siren sounds that are limited in transmission range. Amplifiers can be used in the most densely congested downtown areas, where tall building may hinder the communication frequencies.
An additional advantage of the emergency vehicle alert system is distributing the system costs to commuter vehicle drivers, in addition to the municipal governments. The receiver is located in the commuter vehicle. The receiver can be original equipment from the factory on new cars. Existing commuter vehicles can be retrofitted with a receiver purchased from a local auto parts store. Also, local governments may coordinate reduced cost quantity purchases for the local citizens.
A method for an emergency vehicle alert system for transmitting signals from one or more emergency first vehicle to a nearby commuter second vehicle, comprises the following steps. Activating an initiation switch in one or more of the emergency first vehicles. Transmitting a uniquely individual signal stamp of a predefined redefined frequency from a transmitter in each of the emergency first vehicles. Receiving each of the predefined frequency signal stamps by a receiver in the commuter second vehicle. Actuating by the receiver of a notification warning, for observation by an occupant in the commuter second vehicle. Indicating by the receiver the number of emergency first vehicles in the vicinity, based on the uniquely individual signal of each emergency first vehicle. Counting down by the receiver the number of emergency first vehicles in the vicinity, as the emergency first vehicles travel beyond the transmitting range of each of the transmitters. Indicating an all-clear notification, when all emergency first vehicles have traveled beyond the transmitting range of each of the transmitters.
A GPS signal component can be included, in addition to the unique signal stamp of each emergency vehicle. The GPS signal includes the following steps. Transmitting a GPS signal of a predefined frequency from the emergency first vehicle, upon transmitting the uniquely individual signal stamp. Receiving the GPS signal of the predefined frequency signal by the receiver in the commuter second vehicle. Indicating within the commuter second vehicle the position of the emergency first vehicle in relation to the commuter second vehicle based on the GPS signal. Updating continuously the position of the emergency first vehicle in relation to the commuter second vehicle based on the GPS signal, such that the occupant can perform appropriate actions to avoid the emergency first vehicle.
A first sensor can be included to monitor the speed of the emergency vehicle. The EVAS includes the steps of sensing by a first sensor, and registering by a first sensor data on the speed and direction of the emergency first
Bame James E.
Goins Davetta W.
Hofsass Jeffery
LandOfFree
Emergency vehicle alert system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Emergency vehicle alert system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Emergency vehicle alert system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3074555