Emergency stop of a polymerization in the gas phase

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S084000, C526S065000

Reexamination Certificate

active

06339133

ABSTRACT:

The present invention concerns a process for the emergency stopping of a polymerization reaction in the gas phase.
Processes for stopping olefin polymerization reactions are generally based on the use of a poison of the reaction (or deactivating agent) to rapidly interrupt the polymerization, for example in case of an electrical or technical failure of the recirculation and/or cooling system of the reaction in the gas phase. As these reactions are generally highly exothermic, the rapid interruption of the reaction is essential in order to avoid reaching the melting point and causing the agglomeration of the polymer, which would render the reactor, and hence the entire polymerization installation, temporarily unusable.
The document EP 0 136 029 proposes the introduction of a poison with the aid of an inert gas into a polymerization reactor. The authors admit that the evacuation to the open atmosphere of the gaseous reagent contained in the reactor, sometimes recommended, is ruled out both for ecological reasons and for reasons of human and equipment safety. One of the surest and simplest ways to eliminate the gaseous content of the reactor is to burn it off in a burner. But again, the authors note that the high rate of discharge downstream from the reactor could present a problem with the use of a burner. In fact, economic and technical considerations rule out the use of a burner when the discharge rate is as high as that required for the fast and complete evacuation of the gas contained in the reactor. No solution to this problem is given or suggested in this document.
The document EP 0553 908 presents a system which, in case of a failure of the recirculation compressor, uses part of the pressurized recirculated flow to drive the compressor and maintain the bed in the fluidized state, after which this low-discharge part of the flow can be burned off in a burner. However, this system is complex and is primarily adapted to the electrical, and to a lesser degree technical, failure of the compressor, but does not cover other situations requiring the emergency stopping of the reactor, such as for example a failure of the system for cooling the recirculated flow.
The object of the invention is therefore to offer a process for the emergency stopping of a polymerization reaction in the gas phase that eliminates the drawbacks presented above by allowing, first of all, the efficient and homogeneous introduction of a poison of the reaction into the reactor in order to deactivate the reagents, and secondly the evacuation, at a controlled rate, of the gaseous reagent (monomer) to a burner in order to burn it off without exceeding the maximum rate.
The present invention offers a process for the emergency stopping of a polymerization reaction in the gas phase comprising the injection of a poison of the reaction into a polymerization reactor and the evacuation of the gaseous content of the polymerization reactor via delaying means to a burner at the maximum limited feed rate characterized in that the delaying means simultaneously serve to obtain a homogeneous distribution of the poison of the reaction inside the polymerization reactor so as to interrupt the polymerization reaction, and to regulate the flow of the gasses evacuated to the burner so as not to exceed the maximum feed rate of the latter.
A first advantage of the present invention is being able to use a burner of normal capacity having a maximum feed rate substantially lower than the rate required in case of emergency, when fast evacuation of the gaseous content of the reactor is recommended. A second advantage of the present invention is being able to operate at the optimal rate of the burner so as to allow a complete combustion of the gaseous content of the reactor. Furthermore, when the polymerization is performed in several reactors, it is possible to delay the burning of the gaseous contents of the various reactors so as to be able to use the same burner for several reactors.
A first aspect of the present invention offers a process for the emergency stopping of a polymerization reaction in the gas phase in which the means for delaying the evacuation comprise
a buffer reservoir, with a pressure lower than that prevailing in the polymerization reactor, placed between the polymerization reactor and the burner, and
means for regulating the gas discharge rate at the outlet of the buffer reservoir,
the contents of the reactor being homogeneously mixed with the poison of the reaction by a sudden expansion of the gasses contained in the polymerization reactor to the buffer reservoir by equalizing the pressure between said reactor and said reservoir, and the regulating means serving to reduce and to regulate the feed rate of the burner.
The use of a buffer reservoir results not only in the homogeneous distribution of the poison of the reaction and the regulation of the feed rate of the burner, but also in a reactor that is more quickly available for the possible start of a new polymerization reaction. This buffer reservoir has enough volume, for example a volume 0.5 to 5 times that of the polymerization reactor, to receive at least part of the gaseous content of the reactor. This volume is advantageously calculated as a function of the time available for equalizing the pressure between the polymerization reactor and the buffer reservoir before the melting temperature of the polymer is reached.
The prevailing pressure in the buffer reservoir will preferably be much lower than the initial pressure in the reactor, in order to obtain a maximum pressure gradient at the moment of the expansion. Ideally, the buffer reservoir is under slight pressure from an inert gas such as nitrogen. A pressurization of 0.01 to 1 barg produces good results.
The dispersion of the poison via expansion allows the stopping of the polymerization reaction, perceptible through a drop in the temperature of the reaction medium.
A second aspect of the present invention provides a process for the emergency stopping of a polymerization reaction in the gas phase in which the means for delaying the evacuation comprise
a reservoir containing a carrier gas, with a pressure higher than that prevailing in the polymerization reactor, placed upstream from the polymerization reactor, and
means for regulating the discharge rate at the outlet of the reactor,
the contents of the reactor being homogeneously mixed with the poison of the reaction by the sudden expansion of the carrier gas in the reactor, and the regulating means serving to reduce and to regulate the feed rate of the burner, preferably to its optimum.
The reservoir containing the carrier gas upstream from the polymerization reactor is preferably under high pressure, such as for example a pressure 2 to 10 times higher than the initial pressure prevailing in the polymerization reactor.
The carrier gas is preferably an inert gas, for example nitrogen, helium, argon or their mixtures, or another type of gas or a mixture of these gasses. The carrier gas can be introduced separately, simultaneously, or in a mixture with the poison of the reaction. If it is introduced separately, it is injected upstream from the injection point of the poison, preferably at the inlet of the polymerization reactor, for example upstream from the distribution grid in a fluidized bed polymerization reactor When the carrier gas and the poison are introduced into reactor together or in a mixture, the injection preferably takes place under the distribution grid. It can also be done at several places along the height and/or on the periphery of the polymerization reactor.
The quantity of carrier gas introduced into the reactor must be at least enough to homogeneously distribute the poison of the reaction into the contents of the reactor and depends on the volume of the reactor and the pressure gradient between the carrier gas reservoir and the polymerization reactor before the expansion. However, since the quantity of carrier gas is added to the volume of reagent gas to be burned off in the burner and thus increases the time required for the complete

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Emergency stop of a polymerization in the gas phase does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Emergency stop of a polymerization in the gas phase, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Emergency stop of a polymerization in the gas phase will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2839098

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.