Emergency response information distribution

Telephonic communications – Emergency or alarm communications – Central office responsive to emergency call or alarm

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S090010, C379S042000, C455S404200

Reexamination Certificate

active

06563910

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to the field of communications and in particular, to a network-based emergency, or security, response communication system.
BACKGROUND
Many homes and businesses are equipped with security systems. A typical security system includes a variety of sensors coupled to a control panel. The sensors may be electromechanical devices that generate an electrical signal to indicate the occurrence of a particular condition. The control panel often includes programming and circuitry to sound an audible alarm as well as contact a central monitoring service. The control panel may seize the telephone line at the building and place a telephone call or it may transmit a wireless message using a radio communication channel.
In many cases, the central monitoring service operator includes a human operator. Upon receiving the alarm signal, the central monitoring service operator interprets the data and contacts an operator at a public safety answering point (hereinafter “PSAP”). The central monitoring service operator, in turn, then relays the information received with the alarm signal to a PSAP operator. The PSAP operator further evaluates the information received from the central monitoring service operator and dispatches the appropriate emergency response personnel to the site.
The PSAP operator may also receive live calls on an emergency telephone number, such as 9-1-1 for many communities. As with calls received from a central monitoring service, the PSAP operator evaluates the situation presented by the caller and dispatches the appropriate emergency response personnel to the site.
In addition to receiving incoming calls, the PSAP operator may also be responsible for originating outgoing calls in order to dispatch emergency services. The PSAP operator may dispatch emergency aid by placing a telephone call or by using a wireless communication link. The operator placing the call verbally communicates the information to enable a field unit to respond. The field unit, or responding party, then renders aid based on the information received from the PSAP operator or dispatch service.
At some PSAP facilities, the PSAP operator receives the incoming emergency calls and conveys the emergency data to a second operator who then provides dispatch services.
Within the context of a security system, the central monitoring station, or remote monitoring facility, is typically a subscription, or fee-based, commercial service providing around-the-clock monitoring of a security system. In addition to monitoring security systems for alarms, the central station also may engage in verification, or authentication, of an emergency signal by attempting to place a telephone call to an authorized person, which may be the homeowner. If the attempt to call the authorized person is successful, the central station may request the homeowner to verify the alarm signal. After the emergency call has been verified, the central station may then place a call to the PSAP facility which provides dispatch service.
Numerous problems accompany the system described above. For example, the responding unit (i.e., squad car personnel, ambulance personnel, or fire department personnel) may not receive all information concerning the particular emergency event. Data may be lost, or corrupted, anywhere along the communication path between the central station and the field response unit. The classic children's game known as “telephone” epitomizes the problems associated with repeated human intervention in the transmission of data. Each successive person in the chain of communication may unwittingly introduce errors or omit critical data. The absence of recognized standards for communicating emergency response data appears to aggravate the communication problem.
Another problem with the current system is that the data may be obsolete at a time when the responding unit arrives at the scene. For example, a robber may have left the scene by the time police arrive at a home and yet the security alarm signal indicates that an intruder remains at the premises. Emergency services, once dispatched, can rarely be withdrawn. Similarly, responding units seldom have the capacity to receive updated status information regarding an emergency situation once a dispatch has been ordered. Thus, obsolete or erroneous data may present safety hazards for field personnel or it may jeopardize the adequacy of the emergency response.
Previous efforts to address problems with the present system have been unsatisfactory. For example, enhanced 9-1-1 (“E-911”) service automatically provides a call back number and geographic location of the caller. The location information may be used to provide call routing to the nearest PSAP. E-911 does not address the problems inherent in a serialized communication stream of data from the caller, to the PSAP operator, and eventually, to the response team. Consequently, E-911, like traditional 9-1-1 service, may encounter problems such as lost, corrupt and incomplete data.
For these and other reasons, the present system of communicating emergency and security information using a PSAP is inadequate.
SUMMARY
The above-mentioned problems with PSAP communication systems, and other problems, are addressed by the present invention and will be understood by reading and studying the following specification. A system is described for network communications using a network address. Data concerning an emergency event detected by a security system, or received in a 9-1-1 telephone call, is posted as a database on the network using an assigned network address. Service providers, dispatchers, and other authorized users can access the database using the network address. In one embodiment, the network is the world wide web, or Internet and the address corresponds to a URL. In one embodiment, the database is encrypted to minimize or eliminate tampering by unauthorized users. Encryption also enables authentication of the data entered. In one embodiment, access to the database, or collection of information is restricted by access control. Access control may include a program executing on a processor or hardware that limits access to only those users having authorization to access the information. Other methods of restricting access, other than those involving encryption, are also contemplated. For example, the data may be accessible using socket communications, thus preventing (or reducing) tampering and unauthorized viewing.
Service providers can access the database using the network address and a decryption key, or password. In one embodiment, service providers, and others, access the database using a processor executing software. In one embodiment, the software is a network browser, such as, for example, Netscape Navigator™ (Netscape Communications Corporation, Mountain View, Calif.) or Microsoft Internet Explorer™ (Microsoft Corporation, Redmond, Wash.).
In various embodiments, an assortment of user selectable buttons are presented to the network user. One such button enables a service provider to request bidirectional communications with an authorized person, such as, for example, a residential owner or tenant. One embodiment provides that actuation of a button submits a request to monitor audio or video from a particular communication device, preferably located near, or at the site of the sensor that initiated communications with the PSAP facility. One such button enables a service provider to levy a fee against a particular financial account, such as, for example, a monetary fine for a false alarm. One such button enables a service provider to automatically send a query to an authorized person, or a particular communication device, requesting that the truth or falsity of the detected alarm is verified. One such button allows linking to an auxiliary page, or pages, of data related to the subscriber account, the caller's telephone number or identity, or a street address. One such button enables a moving map function whereby movement of a tracking device is displayed in re

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Emergency response information distribution does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Emergency response information distribution, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Emergency response information distribution will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3033703

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.