Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Earth science
Reexamination Certificate
2001-03-30
2003-06-03
Lefkowitz, Edward (Department: 2862)
Data processing: measuring, calibrating, or testing
Measurement system in a specific environment
Earth science
C711S100000
Reexamination Certificate
active
06574561
ABSTRACT:
BACKGROUND OF THE INVENTION
In emergency management, as in other time sensitive activities, timely and accurate information is vital for use in allocating resources as well as achieving other emergency management priorities such as field assessment and analysis. Clearly, in the hours immediately following a disaster there is an urgent need for accurate information to manage the relief effort. As used herein, a disaster includes natural disasters such as hurricanes, fires, earthquakes or famine or man-made disasters such as war or terrorism. When such disasters occur, the scope of the damage is generally geographically dispersed and may affect vast numbers of people and extensive damage to infrastructure. In the time period immediately following the disaster, local resources such as police, fire protection and heath care are often inadequate to respond to all of the problems related to the disaster. Often, outside resources are required to supplement local resources and, since the disaster may be geographically widespread, it is often difficult to determine how best to allocate these outside resources.
When a disaster occurs, it is common practice to establish an Emergency Management Center (EMC) in the area hit by the disaster to collect information regarding the damage and manage the allocation of outside resources. When the disaster is widespread, such as occurs after a hurricane or earthquake, several EMCs are established throughout the region so coordinating the aid requests and efficiently allocating resources becomes a major and complicated task. These EMCs must communicate with established EMCs operated by local, state and federal agencies tasked to deal with such disasters. In addition to the EMC, individuals affected by the disaster may need to acquire information regarding their relatives or personal possessions such as a house or boat located in the disaster area.
Often, however any information that arrives at the EMC is anecdotal, resulting in improper allocation of scarce resources. Indeed, after a major disaster a period of days may pass before a clear picture of the extent and level of damage begins to form at the EMC. In the meantime crucial decisions on resource allocation are made with only limited information. During the time period immediately following the disaster, individuals may clog the telephone network and harass officials at the EMC and elsewhere for information relating to their personal concerns. There is a great need to provide timely and accurate information to individuals in an automatic manner so that EMC officials are free to concentrate on coordinating disaster relief.
Unfortunately, the EMC that often sends in the first resource requests is the area least affected by disaster while EMCs located in geographical areas with heavy damage are typically overwhelmed and slow to assess the damage, as the emergency response personnel are occupied responding to immediate lifesaving tasks. Many times EMCs in heavily damaged areas are simply unable to determine what resources are required. Often the damage to the infrastructure, such as by way of example, highways, power transmission grids, water supply, condition of medical facilities, public buildings, etc., is so heavily damaged that it is difficult to even establish communication between EMCs to request assistance. Without accurate and timely information, there is a high risk of improperly allocating scarce resources.
When a large hurricane makes landfall, by way of illustrative example, up to forty-eight hours may pass before areas hard hit by the storm are able to re-establish communications. During this period there may be little accurate information available to the EMC as to the extent of the damage, or the exact resources that are required. Because of this information void at the central EMC during the period immediately following the disaster, it is difficult to provide adequate resources in a timely manner. To overcome the information void, Federal Emergency Management Association (FEMA) agents use portable information and communication devices, such as the GSC100 manufactured by Magellan, Inc., to relay information from established emergency locations to the EMC. This vital information, sent via a satellite communication system, includes the functional status of hospitals, the extent of property damage, the state of communications networks, and the condition of other infrastructure in the area affected by the disaster. Thus, the remote emergency centers are able to immediately begin collecting damage information through observation. The agents are able to observe downed bridges, blocked roads, destroyed buildings and numerous other items vital to accurate field assessment and analysis. Use of the information provided from the remote emergency centers is collected and manually tabulated to develop a more timely picture of damage caused in the disaster. Unfortunately, this system does not provide for real time assessment of the data at the EMC. Since decisions at the EMC must be made and resources allocated according to timely assessment of the damage, failure to accurately assess the scope and scale of the damage and allocate resources commensurate with the size of the disaster is possible. This type of failure to timely analyze the data is a fundamental problem that commonly occurs during and immediately following a disaster.
What is needed is a method and system for determining human casualties and inspecting infrastructure immediately after a disaster and for rapidly translating this information into a usable format for prompt analysis at the EMC or at other sites tasked with assisting in an emergency. A significant limitation under which the inspectors must operate arises because they only see a fragment of the disaster area and their immediate impressions may not reflect the situation as it exists in the entire area. What is needed is an emergency management system that provides reliable two-way communication capability that is separate from terrestrial-based communications networks and that is able to aggregate reports from widely dispersed locations within a geographical area in a timely manner.
It is an object of this invention to meet these needs by providing a real time management system for collecting information from geographical distributed locations comprising:
means for collecting information at geographically distribtuted locations and for assigning unique space-time coordinates associated with said infomation, said information and said associated space-time coordinates collected for subsequent transmission;
a communication network for transmitting said collected information and associated space-time coordinates;
means for establishing a connection between said information collection means and said communication network and for initiating the transmission of said collected information and associated space-time coordinates at a selected time; said establishing means coupled to said means collecting means;
a computer, coupled to said communications network, adapted to receive said collected information and associated space-time coordinates from said information collection means and for transforming said collected information and associated space-time coordinates into an event description and associated GIS data; said computer adapted to store said event description and associated GIS data in an event database and for accessing a reference geographic database to generate an event summary map that combines said event description with a previously generated base map; and
means for distributing said event summary map.
It is a further object to provide a system for managing the distribution of resources in response to a disaster comprising:
means for assessing damage at a location and communicating information regarding the damage, said damage assessing means comprising a portable communication device having a visual display for displaying a menu-based field assessment form displayed in a manner that prompts a user to enter information responsive to a plurality of displayed querie
Alexander John Franklin
Lambert J. David
Merckel Gerald
Baca Matthew W.
Gutierrez Anthony
Saitta Thomas C.
The University of North Florida
LandOfFree
Emergency management system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Emergency management system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Emergency management system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3163071