Surgery – Instruments – Means for inserting or removing conduit within body
Reexamination Certificate
1999-09-21
2001-08-21
Mancene, Gene (Department: 3732)
Surgery
Instruments
Means for inserting or removing conduit within body
C606S200000
Reexamination Certificate
active
06277125
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a medical device for placing an embolic coil at a preselected location within a vessel of the human body, and more particularly, relates to a catheter having retaining jaws at the distal tip of the catheter for holding the embolic coil in order to transport the coil to a desired position within the vessel and a release mechanism for causing the jaws to open to thereby release the embolic coil at that position.
2. Description of the Prior Art
For many years flexible catheters have been used to place various devices within the vessels of the human body. Such devices include dilatation balloons, radiopaque fluids, liquid medications and various types of occlusion devices such as balloons and embolic coils. Examples of such catheter devices are disclosed in U.S. Pat. Nos. 5,108,407, entitled “Method And Apparatus For Placement Of An Embolic Coil”; 5,122,136, entitled, “Endovascular Electrolytically Detachable Guidewire Tip For The Electroformation Of Thrombus In Arteries, Veins, Aneurysms, Vascular Malformations And Arteriovenous Fistulas.” These patents disclose devices for delivering embolic coils to preselected positions within vessel of the human body in order to treat aneurysms, or alternatively, to occlude the blood vessel at the particular location.
Coils which are placed in vessels may take the form of helically wound coils, or alternatively, may be random wound coils, coils wound within other coils or many other such configurations. Examples of various coil configurations are disclosed in U.S. Pat. Nos. 5,334,210, entitled, “Vascular Occlusion Assembly; 5,382,259, entitled, “Vasoocclusion Coil With Attached Tubular Woven Or Braided Fibrous Coverings.” Embolic coils are generally formed of radiopaque metallic materials, such as platinum, gold, tungsten, or alloys of these metals. Often times, several coils are placed at a given location in order to occlude the flow of blood through the vessel by promoting thrombus formation at the particular location.
In the past, embolic coils have been placed within the distal end of the catheter. When the distal end of the catheter is properly positioned the coil may then be pushed out of the end of the catheter with, for example, a guidewire to release the coil at the desired location. This procedure of placement of the embolic coil is conducted under fluoroscopic visualization such that the movement of the coil through the vasculature of the body may be monitored and the coil may be placed at the desired location. With these placements systems there is very little control over the exact placement of the coil since the coil may be ejected to a position some distance beyond the end of the catheter.
Numerous procedures have been developed to enable more accurate positioning of coils within a vessel. Still another such procedure involves the use of a glue, or solder, for attaching the embolic coil to a guidewire which, is in turn, placed within a flexible catheter for positioning the coil within the vessel at a preselected position. Once the coil is at the desired position, the coil is restrained by the catheter and the guidewire is pulled from the proximal end of the catheter to thereby cause the coil to become detached from the guidewire and released from the catheter system. Such a coil positioning system is disclosed in U.S. Pat. No. 5,263,964, entitled, “Coaxial Traction Detachment Apparatus And Method.”
Another coil positioning system utilizes a catheter having a socket at the distal end of the catheter for retaining a ball which is bonded to the proximal end of the coil. The ball, which is larger in diameter than the outside diameter of the coil, is placed in a socket within the lumen at the distal end of the catheter and the catheter is then moved into a vessel in order to place the coil at a desired position. Once the position is reached, a pusher wire with a piston at the end thereof is pushed distally from the proximal end of the catheter to thereby push the ball out of the socket in order to release the coil at the desired position. Such a system is disclosed in U.S. Pat. No. 5,350,397, entitled, “Axially Detachable Embolic Coil Assembly.” One problem with this type of coil placement system which utilizes a pusher wire which extends through the entire length of the catheter and which is sufficiently stiff to push an attachment ball out of engagement with the socket at the distal end of the catheter is that the pusher wire inherently causes the catheter to be very stiff with the result that it is very difficult to guide the catheter through the vasculature of the body.
Another method for placing an embolic coil is that of utilizing a heat releasable adhesive bond for retaining the coil at the distal end of the catheter. One such system uses laser energy which is transmitted through a fiber optic cable in order to apply heat to the adhesive bond in order to release the coil from the end of the catheter. Such a method is disclosed in U.S. Pat. No. 5,108,407, entitled, “Method And Apparatus For Placement Of An Embolic Coil.” Such a system also suffers from the problem of having a separate, relatively stiff element which extends throughout the length of the catheter with resulting stiffness of the catheter.
Still another method for placing an embolic coil is disclosed in co-pending U.S. patent application Ser. No. 09/177,848, entitled, “Embolic Coil Hydraulic Deployment System,” filed on Oct. 22, 1998 and assigned to the same assignee as the present patent application. This patent application discloses the use of fluid pressure which is applied to the distal tip of the catheter for expanding the lumen of the catheter in order to release the embolic coil.
SUMMARY OF THE INVENTION
The present invention is directed toward a vascular occlusive coil deployment system for use in placing an embolic coil at a preselected site within a vessel which includes an elongated flexible positioning member having a lumen extending therethrough and having proximal and distal ends. Retaining jaws are affixed to the distal end of the positioning member. The retaining jaws have a closed position for gripping and retaining the embolic coil and an open position for releasing the coil. A heat responsive coupling member is bonded to the retaining jaws to hold the jaws in a closed position. The heat responsive coupling member exhibits the characteristic of softening and yielding upon being heated. A heating element is positioned in close proximity to the heat responsive coupling member and is adapted to be coupled to a source of energy by the use of a conductor which extends through the lumen in the delivery member. When energy is applied through the conductor to the heating element, the heating element causes the heat responsive coupling to soften and stretch to allow the retaining jaws to move to the open position to thereby release the embolic coil at the preselected site.
In accordance with another aspect of the present invention, the retaining jaws are resiliently biased toward the open position, and are preferably resiliently biased outwardly, to thereby cause the embolic coil to be released when the coupling member becomes heated.
In accordance with still another aspect of the present invention, the retaining jaws comprise two arms, which are preferably parallel to each other, which are resiliently biased outwardly. The heat responsive coupling member extends between the two arms and is bonded to the two arms for holding the jaws in a closed position.
In accordance with still another aspect of the present invention, the heating element takes the form of a resistive heating coil, and preferably the resistively heating coil is wrapped around the outer surface of the heat responsive coupling member to thereby directly apply heat to the coupling member when the coil is energized.
In accordance with still another aspect of the present invention, the energy transmission conductor takes the form of two electrical conductors which extend through the lumen of the delivery m
Barry David C.
Jones Donald K.
Collins Henry W.
Cordis Neurovascular Inc.
Mancene Gene
Priddy Michael B.
LandOfFree
Embolic coil deployment system with retaining jaws does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Embolic coil deployment system with retaining jaws, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Embolic coil deployment system with retaining jaws will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2479393