Surgery – Instruments – Internal pressure applicator
Reexamination Certificate
1999-07-16
2001-01-30
Hirsch, Paul J. (Department: 3732)
Surgery
Instruments
Internal pressure applicator
C606S114000
Reexamination Certificate
active
06179859
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates apparatus and methods for removing emboli from the blood stream that are generated during treatment of vascular disease, such as angioplasty, atherectomy or stenting. More particularly, an emboli filtration device and methods are provided having a captured filter that enables movement of a guidewire associated with the filter without displacing the filter.
BACKGROUND OF THE INVENTION
Atherosclerosis and other vascular occlusive diseases are becoming prevalent today in many developed countries. In such diseases, the flow areas of blood vessels become narrowed or occluded by the buildup of plaque on the walls of the vessels, leading to ischemia, and depending upon the location of the vessel, damage to the organ or limb. A number of surgical and percutaneous procedures have been developed for treating stenosis in the coronary arteries and carotid arteries, including endarterectomy, angioplasty, atherectomy and stenting.
One problem frequently encountered during such procedures is that pieces of plaque (“emboli”) often are dislodged from the stenosis or the vessel wall. Such emboli may travel inner smaller diameter regions of the vasculature, blocking blood vessels and causing ischemic injury. This problem is especially severe where the emboli are permitted to travel into the coronary arteries and carotid arteries, and can result in infarction, stroke and even death.
Emboli filtration devices are known in which filter elements are deployed against the walls of a vessel distal to a stenosis. Such filters typically comprise a polymer or wire sac mounted on a distal region of a guide wire or angioplasty catheter, and permit blood to flow through the filter while trapping emboli. Once treatment of the stenosis is completed, the filter containing the captured emboli is contracted and withdrawn from the vessel.
For example, U.S. Pat. No. 5,814,064 to Daniel et al. describes an emboli capturing system having a radially expandable mesh filter disposed on the distal end of a guide wire. The filter is deployed distal to a region of stenosis, and any interventional devices, such as an angioplasty balloon or stent delivery system are advanced along the guide wire. The filter is designed to capture emboli generated during treatment of the stenosis while permitting blood to flow through the filter.
U.S. Pat. No. 4,723,549 to Wholey et al. describes an angioplasty catheter having a filter element disposed on its distal end. The filter is supported on a plurality of circumferential struts, and is expanded against the interior wall of a vessel, distal to a stenosis, by an inflation balloon. An angioplasty balloon is disposed on the catheter proximal of the filter for dilating the stenosis. The filter captures emboli dislodged during the dilatation procedure, and then is contracted and removed from the vessel with the angioplasty catheter.
A key disadvantage of previously known emboli filtration systems, such as described in the foregoing patents, is that the filters in those devices are fixedly attached to the guide wire or angioplasty catheter, respectively. If the catheter or guide wire is rotated, bumped or moved after the filter has been deployed, there is a substantial risk that filter will become temporarily dislodged or skewed, thereby permitting emboli to escape past the filter. Moreover, movement of the deployed filter against the vessel wall also may damage the endothelium, and/or dislodge emboli distal to the filter. Such motion is especially likely to occur when other devices such as an angioplasty balloon catheter are deployed along the guide wire after the filter is deployed, as in the Daniels et al. patent.
In view of these disadvantages it would be desirable to provide emboli filtration apparatus and methods having a filter element that remains stationary once deployed.
It also would be desirable to provide emboli filtration apparatus and methods having a filter that may be deployed along a guide wire, but is configured so that subsequent displacements or rotation of the guide wire will not dislodge the filter.
It further would be desirable to provide emboli filtration apparatus and methods that reduce the risk of emboli escaping from a filter element.
It still further would be desirable to provide emboli filtration apparatus and methods that reduce the risk of trauma to vessel endothelium resulting from movement transferred to the emboli filtration apparatus.
SUMMARY OF THE INVENTION
In view of the foregoing, it is an object of this invention to provide emboli filtration apparatus and methods having a filter element that remains stationary once deployed.
It is another object of the present invention to provide emboli filtration apparatus and methods having a filter that may be deployed along a guide wire, but is configured so that subsequent displacements or rotation of the guide wire will not dislodge the filter.
It is also an object of this invention to provide emboli filtration apparatus and methods that reduce the risk of emboli escaping from a filter element.
It is a further object of the present invention to provide emboli filtration apparatus and methods that reduce the risk of trauma to vessel endothelium resulting from movement transferred to the emboli filtration apparatus.
These and other objects of the present invention are accomplished by providing emboli filtration apparatus comprising a guide wire having a filter element captured thereon, so that the guide wire is free to rotate and translate while the filter element remains stationary. The apparatus thus allows for movement and rotation of the guide wire as devices are advanced over it to treat a stenosis, substantially without dislodging the filter element. Accordingly, the risk of permitting emboli to escape during temporary displacement or skewing of the filter element is reduced, as well as movement-induced trauma of the vessel endothelium.
In a preferred embodiment, the apparatus comprises a guide wire having a filter element captured for rotation and translation on a distal end thereof. The filter element preferably comprises a wire or polymer sac affixed to a plurality of self-expanding struts. The filter element has a contracted state, suitable for transluminal insertion disposed inside a retractable sheath, and a deployed state, wherein an outer perimeter of the filter element engages the walls of a vessel when the sheath is retracted proximally.
The filter element includes a proximal capture ring having a diameter which is larger than the diameter of the guide wire, but smaller than the diameter of the distal tip of the guide wire. The capture ring allows the guide wire to move freely with relative to the filter element over a limited range, so that movement or rotation of the guide wire does not cause the filter to move or to scrape against the walls of the vessel. When it is desired to retract the filter element, the guide wire is pulled proximally so that the distal tip of the guide wire engages the capture ring and pulls the filter element back into a sheath to its contracted state.
Optionally, the filter element may include a cylindrical sleeve that ensures that the filter forms an adequate seal against the walls of the vessel in the deployed state, thus preventing bypass flow around the filter. The sleeve also assists in orienting the axis of the filter element parallel to the axis of the vessel.
Methods of using the apparatus of the present invention to remove emboli during a surgical or percutaneous transluminal procedure also are provided.
REFERENCES:
patent: 3592186 (1971-07-01), Oster
patent: 3683904 (1972-08-01), Forster
patent: 3952747 (1976-04-01), Kimmell, Jr.
patent: 3996938 (1976-12-01), Clark, III
patent: 4046150 (1977-09-01), Schwartz et al.
patent: 4723549 (1988-02-01), Wholey et al.
patent: 4790812 (1988-12-01), Hawkins, Jr. et al.
patent: 4921484 (1990-05-01), Hillstead
patent: 4969891 (1990-11-01), Gewertz
patent: 4998539 (1991-03-01), Delsanti
patent: 5002560 (1991-03-01), Machold et al.
patent: 5011488 (1991-04-01), Ginsburg
Bates Mark C.
Horzewski Michael
Baff LLC
Fish & Neave
Hirsch Paul J.
Pisano Nicola A.
LandOfFree
Emboli filtration system and methods of use does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Emboli filtration system and methods of use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Emboli filtration system and methods of use will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2440203