Elongate radiator conformal antenna for portable...

Communications: radio wave antennas – Antennas – With radio cabinet

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C343S7000MS, C343S828000, C343S873000

Reexamination Certificate

active

06292144

ABSTRACT:

FIELD OF THE INVENTION
The invention generally concerns portable communication antennas. The invention particularly concerns antennas for portable communication devices.
BACKGROUND OF THE INVENTION
One trend is toward the expansion of capabilities of portable communication devices. This includes the merger of formerly separate devices, such as cell phones and organizers, and the expansion of the capabilities of individual devices, such as the use of a single cell phone for more than one band of operation, e.g., AMPS and PCS bands, or the addition of voice communications, paging or other functions to phones, data terminals and other portable communication devices. As the delivery of services to communication devices and the capability of communication devices increases, the need for bandwidth of operation similarly increases. Voice communications may occur on one or more operational bands, E-mail communications on another, news information on yet another and so on.
A conflicting trend is the reduction in size of portable communication devices. A major impediment to the reduction in size is the need to include an antenna, typically in the form of a whip, helix or a combination of both, that has a length corresponding to a half or quarter of the wavelength of the operational frequency. Dual band operations typically require a switching between multiple radiators in such a whip/helix antenna structure. Expansion beyond two bands, if it can be accomplished at all, adds even more complexity. In addition, the general nature of an extendable whip with or without a helix requires the communication device to have a length which is equal or close to the length of the whip to permit its retraction and extension. The whip style antennas also suffer from reliability problems. They break, bend, and can wear from cycling, to the point where electrical contact to communication device circuits as intended becomes unreliable.
One solution to this problem has been the use of conformal patch antennas. These antennas obviate the need for an extendable whip, and in some forms can provide dual band operation. The general structure of the antenna is a patch area separated from a ground plane, generally referred to as a planar inverted F (PIFA) structure in the art. The difficulty with the patch style antenna is its size and shape. Patches in portable communication devices require a ground plane which extends slightly beyond the perimeter defined by the patch. This makes placement of the antenna, typically within the communication device, difficult to accommodate. The area of the patch is also likely to be blocked, at least partially, by a user's hand during operation.
Thus, there is a need for an improved conformal antenna for portable communication devices which meets the need for adequate radiation performance, is reliable, and does not add significantly to the dimensions of the portable device. Due to the increasing services offered by portable communication devices, such an improved antenna should be expandable to multiple bands, and should be capable of broad band operation. These and other needs are met or exceeded by the multiband antenna of the present invention.
SUMMARY OF THE INVENTION
The antenna of the present invention is a conformal antenna having an elongate radiator element grounded to a ground plane generally opposite the elongate radiator element, and driven by a feed connected to the elongate radiator element at a point between its connection to the ground plane and its open end. The elongate radiator element and ground plane are conformed with dielectric which, due to its wavelength shortening effect, reduces the required length of the elongate radiator element to less than a quarter wavelength. Conformed with dielectric, as used herein, means on or within the surface of the dielectric. The dielectric material with which the antenna is conformed and any additional dielectric material between the elongate radiator element and the ground plane is preferably low loss tangent material.
The elongate radiator element of the present antenna can be formed as a strip or wire. Its elongate nature and the overall design of the present invention permit simple expansion beyond a single band and simple broad banding operation through use of additional generally parallel elongate radiator elements. The additional elongate radiator elements may be commonly connected to a feed element, such as a microstrip disposed generally perpendicular to the elongate radiator elements, or separate feed elements to each elongate radiator are possible. The elongate radiator elements have different lengths for different bands. Any particular one of the elongate radiator elements is shorter than the quarter wavelength for the center frequency of its corresponding band of operation. Broad banding is obtained by multiple length elements stagger tuned, by their length, to closely staggered or slightly overlapping bands of operation.
The antenna is a suitable replacement for external whip antennas commonly used in portable communication devices such as cell phones and personal communication systems. It is preferably conformed with dielectric which conforms to a portion of an outer surface of the communication device, in a location which should be away from portions that are typically grasped in a user's hand. Such a location is feasible, in part, due to the small footprint of the antenna of the invention. In a multiband embodiment, despite close proximity of the multiple elongate radiator elements, only the elongate radiator element tuned by its length to the instantaneous operating frequency band will be active due to the substantial impedance mismatches of the remaining elements to the transmitter/receiver of the communication device.


REFERENCES:
patent: 4123756 (1978-10-01), Nagata et al.
patent: 4816836 (1989-03-01), Lalezari
patent: 5365246 (1994-11-01), Rasinger et al.
patent: 5555459 (1996-09-01), Kraus et al.
patent: 5559522 (1996-09-01), Seitz
patent: 5777585 (1998-07-01), Tsuda et al.
patent: 5821903 (1998-10-01), Williams
patent: 5841402 (1998-11-01), Dias et al.
patent: 5841403 (1998-11-01), West
patent: 5852421 (1998-12-01), Maldonado
patent: 5854970 (1998-12-01), Kivela
patent: 5886668 (1999-03-01), Pedersen et al.
patent: 5966097 (1999-10-01), Fukasawa et al.
patent: 5977916 (1999-11-01), Vannatta et al.
patent: 6040803 (2000-03-01), Spall
G. Lazzi, J. Johnson, S.S. Pattnaik, and O.P. Gandhi “Experimental Study on Compact, High-Gain, Low SAR And Single-And Dual-Band Patch Antenna For Cellular Telephones”, Proc. 1998 IEEE Antennas and Propagation Society International Symposium, Jun. 21-26, 1998, Atlanta, Georgia, pp. 130-133.
S.C. Pan and K.L. Wong, “Design of Dual-Frequency Microstrip Antennas Using a Shorting-pin Loading”, Proc. 1998 IEEE Antennas and Propagation Society International Symposium, Jun. 21-26, 1998, Atlanta, Georgia, pp. 312-315.
S.H. Al-Charchafchi and B.M. Al-Arjani, “Microstripline Fed Compact Patch Antenna”, Proc. 1998 IEEE Antennas and Propagation Society International Symposium, Jun. 21-26, 1998, Atlanta, Georgia, pp. 668-671.
R.B. Waterhouse, D.M. Kokotoff and F. Zavosh, “Investigation of Small Printed Antennas Suitable For Mobile 1998, Communication Handsets”, Proc. 1998 IEEE Antennas and Propagation Society International Symposium, Jun. 21-26, Atlanta, Georgia, pp. 1946-1953.
J.H. Lu and K.P. Yang, “Slot-Coupled Compact Triangular Microstrip Antenna With Lumped Load”, Proc. 1998 IEEE Antennas and Propagation Society International Symposium, Jun. 21-26, 1998, Atlanta, Georgia, pp. 916-919.
H. Nakano, N. Ikeda, Y.Y. Wu, R. Suzuki, H. Mimaki, J. Yamauchi, “Realization of Dual-Frequency and Wide-Band VSWR Performances Using Normal-Mode Helical and Inverted-F Antennas”, IEEE Trans. Antennas and Propagation, vol. 46, Jun. 1998, pp. 788-793.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Elongate radiator conformal antenna for portable... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Elongate radiator conformal antenna for portable..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Elongate radiator conformal antenna for portable... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2524384

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.