Elevating lift

Material or article handling – Self-loading or unloading vehicles – With load-receiving portion – or significant section thereof,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C414S471000, C414S495000, C414S549000, C182S002700, C182S002800, C182S002900

Reexamination Certificate

active

06733227

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This disclosure relates to the field of elevating lift apparatus. In particular, to elevating lift apparatus mounted on vehicles for the lifting of loads such as sensor suites.
2. Description of the Related Art
In military strategy, there is a great desire to be able to view the enemy and bring firepower to bear on enemy soldiers, while still keeping your soldiers out of harm's way. One method which is used to bring such firepower upon an enemy from a distance is the artillery barrage. Artillery weapons are generally designed to be able to deliver ordnance onto a target from a great distance and thus are capable of firing indirectly at targets which they cannot see because of intervening terrain by firing their ordnance in high arcs. As will be understood by those of skill in the art, artillery batteries are often safe from enemy fire, as the enemy generally cannot locate them to direct retaliatory fire, and even if the enemy might determine their location, the enemy may not have access to weapons with sufficient range to deliver its ordnance onto the artillery battery.
The problem with firing artillery, however, is that the ordnance fired must be aimed so that it is accurately delivered onto enemy positions, instead of just being fired randomly, or worse upon friendly positions which may be nearby. Since the artillery batteries are out of sight of the enemy, it is not possible for the artillery gunners to sight their weapons directly. Artillery has traditionally relied on forward observers to identify targets, provide the enemy positions, and track where the ordnance is hitting and adjust the fire appropriately.
In many instances, forward observers have been infantry and armor soldiers, or field artillery soldiers, that had worked their way to positions within sight of the enemy whether ahead of the front lines or at the front lines. They then instructed (by radio or some other remote communications method) the fire control center, of artillery units, on adjustment of fire by methods familiar to those of ordinary skill in the art in order to hit targets. As visual enhancement technologies have gotten more sophisticated, the individual has had an increased range and ability to see targets. These technologies have included a simple pair of binoculars, advanced night vision and RADAR systems, and other sensing apparatus. As the technology has developed, so generally has its bulk and weight. It is also desirable to put the forward observers in a vehicle to better protect him/her from the enemy's likely retaliation of the barrage. Therefore, in much of artillery forward observing activity, a vehicle carrying a sensor suite of various different types of sighting apparatus is regularly used for forward sighting with a crew of a few individuals locating targets and returning those locations to the batteries.
As will be understood, the vehicle used is much larger than a soldier performing such duties. Thus, the vehicle needs to use various specialized tactics to avoid detection and retaliatory fire. One of these tactics is to position the vehicle behind some type of concealment and then raise the sensor suite above the cover. In this instance, the sensor suite could be damaged by retaliatory fire, but the vehicle (and its human occupants) may be protected by the vehicle's armor and the cover behind which they are concealed. A still further tactic is to position the vehicle in defilade, which is placing the vehicle on one side of a hill (using the bulk of the hill to protect the vehicle) and raising the sensor suite above the vehicle in a manner so that the sensor suite can see over the hill and down the other side. Defilade relies on the use of mathematical relationships and available angles to provide the sensor suite with a clear field of view. In particular, the sensor suite needs to have a clear sight line downward in front of the vehicle to observe down the far side of the hill, without the vehicle's body blocking that view and with the vehicle still hidden by the hill from the enemy in front of it.
Further, because of the sensitivity of the sensor suite and the accuracy required to effectively assist artillery batteries in bringing ordnance onto desired targets, the mount for the sensor suite on the vehicle needs to be designed to reduce vibration and unintended motion of the suite to increase the accuracy of the targeting. This is particularly true when the suite is being operated at an extreme range from desired targets. Anticipated motion and motion of relatively small magnitudes is generally compensated for through the use of an isolating or gimble mount for the sensor suite. While the isolating mount is successful at dealing with motion whose direction and intensity is known, it cannot always compensate for motion which is unexpected or of particularly large magnitude or which occurs in a manner that bypasses the isolating mount's systems. It is also easier to compensate for motion in certain directions (such as linear motion) with an isolating mount whereas other types of motion (such as rotational) are more difficult to deal with. For this reason, it is therefore desirable to minimize any unintended motion and to dampen any potentially large motions. This is generally accomplished by keeping the sensor suite as stable as possible by providing the sensor suite an attachment to the vehicle which is as stable as possible and/or trying to eliminate motion of the vehicle which could be unintentionally transmitted to the suite.
In order to employ effective artillery tactics, it is necessary to mount the sensor suite at a high point on the vehicle so that it can have the field of view necessary for use in defilade positions or, ideally, to mount the sensor suite on a boom or platform which can be raised above the vehicle for this use. Such mountings keep the vehicle used by a forward observer from narrowing the sensor suite's field of view and allow the vehicle to be positioned out of sight. Previously, there were two methods of mounting the sensor suite to the vehicle. In one method, which was generally used for lighter vehicles, the sensor suite was mounted to the roof of the vehicle which was carrying it. This provided for a fairly rigid, stable platform for the device but also created certain problems. For one, the sensor suite would often take up the position of the defensive weapon mounted on the vehicle, leaving the occupants of the vehicle more vulnerable to attack. Further, the height of the suite was limited to that of the vehicle to which it was attached and thus could lead to parts of the vehicles body being vulnerable when the suite was in use. The vehicle may also have blocked a portion of the sensor suite's view if the vehicle was to be in a good defilade position.
Still further problems resulted from the vulnerability of the sensor suite when mounted on the roof. The suite could be hit by branches or other objects which could damage the sensor suite as the vehicle traveled to its forward observer location. The sensor suite is, by design, to be above the protective body of the vehicle. A more specialized problem, but also a significant one, is that the vehicle with the sensor suite mounted on its roof generally does not fit into standardized transports. This is particularly problematic in air transport scenarios. The C-130 aircraft, which is regularly used by the United States to transport vehicles to battle zones, is designed for extremely efficient storage of vehicles. Military vehicles are built to fairly standardized sizes (essentially blocks) allowing large numbers of them to be placed in close proximity to each other, within the storage areas in a C-130. For this reason, items attached to the exterior surfaces of the vehicles are often removed to allow the vehicles to be more closely packed. This can include defensive weaponry and the sensor suite discussed above. The difficulty with this situation is that the sensor suite is an instrument which must be “bore sighted” b

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Elevating lift does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Elevating lift, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Elevating lift will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3193105

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.