Electrosurgical systems and methods with temperature control

Surgery – Miscellaneous – Methods

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S041000, C607S102000, C607S105000

Reexamination Certificate

active

06557559

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of electrosurgery and, more particularly, to surgical devices and methods which employ very high frequency electrodes comprising an array of individual, isolated electrode terminals.
The field of electrosurgery includes a number of loosely related surgical techniques which have in common the application of electrical energy to modify the structure or integrity of patient tissue. Electrosurgical procedures usually operate through the application of very high frequency currents to cut or ablate tissue structures, where the operation can be monopolar or bipolar. Monopolar techniques rely on external grounding of the patient, where the surgical device defines only a single electrode pole. Bipolar devices comprise both electrodes for the application of current between their surfaces.
Electrosurgical procedures and techniques are particularly advantageous since they generally reduce patient bleeding and trauma associated with cutting operations. Additionally, electrosurgical ablation procedures, where tissue surfaces and volume may be reshaped, cannot be duplicated through other treatment modalities.
The use of electrosurgical procedures in electrically conductive environments, however, can be problematic. For example, many arthroscopic procedures require flushing of the region to be treated with isotonic saline (also referred to as normal saline), both to maintain an isotonic environment and to keep the field of viewing clear. The presence of saline, which is a highly conductive. electrolyte, can cause shorting of the electrosurgical electrode in both monopolar and bipolar modes. Such shorting causes unnecessary heating in the treatment environment and can further cause non-specific tissue destruction.
Present electrosurgical techniques used for tissue ablation also suffer from an inability to control the depth of necrosis in the tissue being treated. Most electrosurgical devices rely on creation of an electric arc between the treating electrode and the tissue being cut or ablated to cause the desired localized heating. Such arcs, however, often create very high temperatures causing a depth of necrosis greater than 500 &mgr;m, frequently greater than 800 &mgr;m, and sometimes as great as 1700 &mgr;m. The inability to control such depth of necrosis is a significant disadvantage in using electrosurgical techniques for tissue ablation, particularly in arthroscopic procedures for ablating and/or reshaping fibrocartilage, articular cartilage, meniscal tissue, and the like.
In an effort to overcome at least some of these limitations of electrosurgery, laser apparatus have been developed for use in arthroscopic and other procedures. Lasers do not suffer from electrical shorting in conductive environments, and certain types of lasers allow for very controlled cutting with limited depth of necrosis. Despite these advantages, laser devices suffer from their own set of deficiencies. In the first place, laser equipment can be very expensive because of the costs associated with the laser light sources. Moreover, those lasers which permit acceptable depths of necrosis (such as excimer lasers, erbium:YAG lasers, and the like) provide a very low volumetric ablation rate, which is a particular disadvantage in cutting and ablation of fibrocartilage, articular cartilage, and meniscal tissue. The holmium:YAG and Nd:YAG lasers provide much higher volumetric ablation rates, but are much less able to control depth of necrosis than are the slower laser devices. The CO
2
lasers provide high rate of ablation and low depth of tissue necrosis, but cannot operate in a liquid-filled cavity.
For these reasons, it would be desirable to provide improved apparatus and methods for efficiently cutting and ablating tissue, particularly fibrocartilage, articular cartilage, meniscal tissue, and the like in arthroscopic and other procedures. Such apparatus and methods should be able to selectively cut and ablate tissue and other body structures in electrically conductive environments, particularly regions which are filled with blood, irrigated with saline, or the like. Such apparatus and methods should be able to perform cutting and ablation of tissues, particularly fibrocartilage, articular cartilage, meniscal tissue, and the like, while limiting the depth of necrosis and tissue adjacent to the treatment site. Such apparatus and methods should be amenable to precise control over the energy flux levels applied to the treatment region, and should be able to provide energy densities sufficient to provide rapid cutting and ablation. The devices should be adaptable to a wide variety of purposes, particularly including both small and large electrode surfaces, and rigid and flexible structures which can be used in open surgery, arthroscopic surgery, and other minimally invasive surgical techniques.
2. Description of the Background Art Devices incorporating radio frequency electrodes for use in electrosurgical and electrocautery techniques are described: in Rand et al. (1985)
J. Arthro. Surg
. 1:242-246 and U.S. Pat. Nos. 5,281,216; 4,943,290; 4,936,301; 4,593,691; 4,228,800; and 4,202,337. U.S. Pat. No. 5,281,216 describes a bipolar device having an active electrode coated with a high impedance material where the differential impedance between the active and return electrodes is optimized to provide a desired cutting effect. Vascular catheters and devices incorporating radio frequency electrodes to assist in penetrating atheroma and plaque are described in U.S. Pat. Nos. 5,281,218; 5,125,928; 5,078,717; 4,998,933; and 4,976,711, and PCT publications WO 93/20747 and WO 90/07303, the latter of which describes a catheter having four isolated electrode surfaces at its distal end. Electrosurgical power supplies including power controls and/or current limiting systems are described in U.S. Pat. No. 5,267,997 and PCT publication WO 93/20747. Surgical lasers for cutting and ablation in arthroscopic and other procedures are described in Buchelt et al. (1991) Surgery and Medicine II: 271-279; and U.S. Pat. Nos. 5,147,354; 5,151,098; 5,037,421; 4,968,314; 4,785,806; 4,737,678; 4,736,743; and 4,240,441.
SUMMARY OF THE INVENTION
The present invention provides methods and apparatus for selectively applying electrical energy to structures within a patient's body. The methods and apparatus are particularly useful for performing electrosurgical interventions, such as ablation and cutting of body structures, through the controlled application of high frequency electrical voltages and currents.
Apparatus according to the present invention comprise electrosurgical probes including a shaft having a proximal end, a distal end, an electrode array disposed near the distal end of the shaft, and a connector disposed near the proximal end of the shaft. The shaft will be of a type suitable for use in open and/or minimally invasive surgical procedures, such as arthroscopic, laparoscopic, thoracoscopic, and other endoscopic procedures. The shaft may be rigid, flexible, or include both rigid and flexible portions, and will be generally suitable for manipulation by the treating physician from the proximal end. A common electrode may optionally be provided on the shaft, typically being mounted over the exterior of the shaft and spaced proximally from the electrode array, and preferably being covered with a perforate, electrically non-conductive shield to protect against accidental tissue contact. The electrode array includes a plurality of electrically isolated electrode terminals disposed over a contact surface, which may be a planar or non-planar surface and which may be located at the distal tip or over a lateral surface of the shaft, or over both the tip and lateral surface(s). Such electrode arrays are particularly useful for performing electrosurgical ablation, as described in more detail below. In addition to planar and other surfaces, the electrode array may be arranged in a linear pattern, which is particularly useful as a blade for elec

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrosurgical systems and methods with temperature control does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrosurgical systems and methods with temperature control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrosurgical systems and methods with temperature control will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3016673

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.