Surgery – Instruments – Electrical application
Reexamination Certificate
2001-03-08
2004-02-10
Rollins, Rosiland Kearney (Department: 3739)
Surgery
Instruments
Electrical application
C606S041000, C606S049000, C606S050000, C606S051000, C607S101000, C607S104000
Reexamination Certificate
active
06689131
ABSTRACT:
TECHNICAL FIELD
The present invention relates generally to electrosurgical devices for use in surgical procedures and, more particularly, to an electrosurgical device having a sensor for detecting a change in tissue dimension.
BACKGROUND
Electrosurgical devices use electrical energy, most commonly radiofrequency (“RF”) energy, to cut tissue and/or cauterize blood vessels. During use, a voltage gradient is created at the tip of the device, thereby, inducing current flow and related thermal energy generation in the tissue. With appropriate levels of electrical energy, the thermal energy generated is sufficient to cut or shrink the tissue being treated, or cauterize blood vessels.
Existing electrosurgical devices can cause the temperature of the tissue being treated (e.g., the tissue treatment zone) to rise significantly higher than 100 degrees C., resulting in tissue desiccation, tissue sticking to the electrodes, tissue perforation, char formation and/or smoke generation. Peak tissue temperatures as a result of RF treatment can be as high as 350 degrees C., and such high temperatures may be transmitted to adjacent tissue via thermal diffusion. Undesirable results of such transmission to adjacent tissue include unintended thermal damage to the tissue. To reduce these undesirable results, electrosurgical devices have been developed that simultaneously introduce a fluid (e.g., an electrolytic solution with RF applications) to the tissue treatment zone, thereby, distributing the thermal energy at the tissue treatment zone, and providing cooling as well.
In many applications, it is often desirable to allow the surgeon or operator of the electrosurgical device to control the dimensional changes of the tissue being treated. Typically, this is accomplished by monitoring the temperature at or near the tissue treatment zone. With some electrosurgical devices, the surgeon or operator can manually control the thermal energy being introduced to the tissue treatment zone. Alternatively, other electrosurgical devices can be configured to operate with a feedback control system to automatically control the thermal energy introduced to the tissue being treated. In either case, shortcomings with existing electrosurgical devices limit their effectiveness in controlling the dimensional changes of the tissue being treated.
In particular, existing electrosurgical devices monitor the temperature at or near the tissue treatment zone using a temperature sensor, such as, a thermocouple, thermistor, phosphor-coated optical fibers, or some other temperature sensor. Various factors often influence the temperature read by the temperature sensor including the temperature of the tissue being treated as well as any fluid being simultaneously infused at the tissue treatment zone. Furthermore, the temperature being read by the temperature sensor varies as the surgeon or operator moves the electrosurgical device into or out of the tissue treatment zone. As a result of these and other factors, it is often difficult to precisely achieve the desired dimensional change (e.g., the amount of shrinkage) of the tissue being treated.
Improvements in electrosurgical devices used in surgical procedures are, therefore, sought.
SUMMARY
In general terms, the present disclosure relates to an electrosurgical device for use in surgical procedures. More particularly, the present disclosure relates to an electrosurgical device having a sensor for detecting a change in tissue dimension, such as, tissue expansion or contraction. In one aspect, the electrosurgical device comprises a main body having a proximal end and a distal end. A heat delivery modality is situated and arranged at the distal end of the main body. A sensor arrangement is also situated and arranged at the distal end of the main body. The heat delivery modality provides thermal energy to a tissue being treated while the sensor arrangement is configured to engage and detect shrinkage of the tissue being treated. In one particular aspect, the heat delivery modality can be configured to provide a continuous flow of electrically conductive fluid to the tissue being treated while thermal energy is introduced.
Further in this aspect, the sensor arrangement can comprise at least one contact sensor situated and arranged at the distal end of the main body. In this aspect, the at least one contact sensor is constructed and arranged to engage and detect the shrinkage of the tissue being treated. Alternatively, the sensor arrangement can comprise first and second clamping members that are situated astride the main body. In this aspect, the first clamping member can include a first end pivotably connected at the main body and a second end opposite the first end. Similarly, the second clamping member can include a first end pivotably connected at the main body and a second end opposite the first end. Each of the second ends of the first and second clamping members can be constructed and arranged to engage and detect shrinkage of the tissue being treated such that the first and second clamping members rotate inwardly with respect to one another.
Still further in this aspect, the first clamping member can include a first mechanical stop for limiting the rotation of the first clamping member. Similarly, the second clamping member can include a second mechanical stop for limiting the rotation of the second clamping member. Accordingly, the first and second mechanical stops can be configured to limit the rotation of the first and second clamping members when the tissue being treated achieves a pre-determined shrinkage level.
Still further in this aspect, the first clamping member can include a first jaw and a second jaw at the second end of the first clamping member. The first and second jaws of the first clamping member can be selectively adjustable to grasp the tissue being treated. Likewise, the second clamping member can include a first jaw and a second jaw at the second end of the second clamping member. The first and second jaws of the second clamping member can be selectively adjustable to grasp the tissue being treated. Furthermore, each of the first and second jaws of the first clamping member can include a textured inner surface for resistively contacting the tissue being treated. Each of the first and second jaws of the second clamping member can also include a textured inner surface for resistively contacting the tissue being treated. Additionally, each of the first and second jaws of the first clamping member can include a solution delivery channel for delivery of a conductive solution to the tissue being treated. Similarly, each of the first and second jaws of the second clamping member can include a solution delivery channel for delivery of a conductive solution to the tissue being treated.
The heat delivery modality can include a first electrode arrangement operable with the first clamping member. The first electrode arrangement can be coupled to a source of radio frequency energy. Similarly, the heat delivery modality can include a second electrode arrangement operable with the second clamping member. The second electrode arrangement can be coupled to the source of radio frequency energy. Moreover, the first electrode arrangement can include at least one wet electrode that is coupled to the source of radio frequency energy while the second electrode arrangement can include at least one wet electrode that is coupled to the source of radio frequency energy.
Further in this aspect, the electrosurgical device can include a forceps extending from the distal end of the main body between the first and second clamping members. The forceps can include a first arm and a second arm that is selectively adjustable to slidably receive the tissue being treated. In this aspect, the heat delivery modality can include a first electrode disposed at the first arm of the forceps and a second electrode disposed at the second arm of the forceps. Furthermore, both the first and second electrodes can be wet electrodes. Still further, the first arm of the forceps can include a first solution del
Gallagher, Esq. Michael J.
Liepa, Esq. Mara E.
Merchant & Gould P.C.
Rollins Rosiland Kearney
TissueLink Medical, Inc.
LandOfFree
Electrosurgical device having a tissue reduction sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electrosurgical device having a tissue reduction sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrosurgical device having a tissue reduction sensor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3310610