Electrostatic discharge protection of a capacitve type...

Image analysis – Applications – Personnel identification

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S661000

Reexamination Certificate

active

06483931

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to the field of fingerprint image sensing and detection; i.e., to the detection of a fingerprint's minutiae such as ridge endings and bifurcations. More specifically, this invention relates to a multipixel, capacitance type fingerprint sensor.
2. Description of the Related Art
As is well known, the fingerprint of a human is composed of lines or ridges, which have both branching parts or bifurcations and abrupt endings or end points. These branching parts, bifurcations, endings, and end points are also known as minutiae. Fingerprints are identified by the locations of, and the relationships among, these minutiae.
The present invention relates to an improved capacitance sensor that operates to sense or detect fingerprint minutiae. The use of capacitance type sensors is generally known.
For example, the publication SENSORS AND ACTUATORS, January, February 1989, no.1/2, at pages 141-153, contains an article entitled INTEGRATED TACTILE IMAGER WITH AN INTRINSIC CONTOUR DETECTION OPTION that was presented at the Fourth International Conference on Solid-State Sensors and Actuators (Transducers '87), Tokyo, Japan, Jun. 2-5, 1987. This article describes an integrated capacitive tactile imaging sensor that comprises a multi-layer construction having a bottom ceramic support, a 9row/9-column array of square aluminum electrodes that are contained on a silicon wafer integrated circuit, a flexible and isolating intermediate layer that is made up of natural rubber, a thin conductive rubber layer, and a top protective layer. In this device, capacitance depends upon local deformation of the natural rubber layer. The 81 individual aluminum electrodes of this device provide capacitive measurement of an indentation pattern within the natural rubber layer, this indentation being caused by a pressure distribution that acts on the top protective layer.
The use of a capacitance type sensor to sense the minutiae of a human fingerprint is also known.
For example, the publication IEEE ELECTRON DEVICE LETTERS, VOL. 18, NO. 1, JANUARY 1997, pages 19-20, contains an article entitled NOVEL FINGERPRINT SCANNING ARRAYS USING POLYSILICON TFT'S OF GLASS AND POLYMER SUBSTRATES. This article describes a two-dimensional (2-D), 200×200, capacitance sensing array that is made up of 40,000 individual pixels. Each pixel of the array includes two thin film transistors (TFTs) and a capacitor plate. Each array pixel resides at the intersection of an array-row and an array-column, and each array pixel is individually addressable by way of row-driver circuits and column-driver circuits.
Considering the two TFTs, hereinafter called TFT-A and TFT-B, that are associated with a given pixel, the drain electrodes of TFT-A and TFT-B are connected to the pixel's capacitor plate, the gate electrode and the source electrode of TFT-A are connected to a row-conductor that is associated with the pixel, the gate of TFT-B is connected to the following row-conductor, and the source of TFT-B is connected to a column-conductor that is associated with the pixel.
A thin (0.1 micrometer) silicon nitride insulator overlies the capacitor plate of each array pixel. When the ridge of a fingerprint lies directly over the capacitor plate, a capacitor is formed between the capacitor plate and the finger. This capacitor is charged when a row-pulse (8 to 10 VDC, and of 10 to 100 micro second duration) is applied to the pixel by way of the row-conductor that is associated with this pixel and TFT-A. This stored charge is thereafter transferred onto the pixel's column-conductor through TFT-B when a row-pulse is applied to the following row-electrode.
Also of interest is the publication 1997 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE that contains an article beginning page 200 entitled A 390DPI LIVE FINGERPRINT IMAGER BASED ON FEEDBACK CAPACITIVE SENSING SCHEME. This article describes a single-chip, 200×200 element array, 2-metal digital CMOS technology, sensor that is based upon feedback capacitance sensing, and that operates to detect the electrical field variation that is induced by the finger's skin surface. In each element of the array , two horizontally spaced metal plates are separated from the overlying and adjacent portion of the finger's skin surface by passivation oxide. Since the distance between the skin and the sensor's surface identifies the presence of the fingerprint's ridges and valleys, an array of elements provides a complete fingerprint pattern.
In each element of the array, the two metal plates are respectively connected to the input and the output of a high-gain inverter, to thereby form a charge-integrator. In operation, the charge-integrator is first reset by shorting the input and output of the inverter. A fixed amount of charge is then sinked from the input, causing the output voltage to swing inversely proportional to a feedback capacitance value that is inversely proportional to the distance to the fingerprint's ridges and valleys. The array of cells, or sensors, thus provides the complete fingerprint pattern. The fingerprint image disappears when the finger is removed from the array.
U.S. Pat. No. 4,353,056, incorporated herein by reference, is of interest in that it relates to a capacitance type fingerprint sensor wherein a finger is pressed onto the sensor's surface in order to read the ridges and valleys of the fingerprint. The sensor-surface has a large number of capacitors of a small physical size associated therewith. Two sensors are described. In a first type of sensor, an electrical insulator carries a number of flexible and horizontally spaced curved metal electrodes, two adjacent metal electrodes of which comprise one capacitor. A protective insulating film overlies the electrical insulator, and when a finger is brought into physical contact with this protective insulating film, the metal electrodes are physically deformed, thereby selectively changing the capacitance of the large number of capacitors in accordance with the fingerprint's ridge/valley pattern. In a second type of sensor, the top surface of a rigid support carries a number of horizontally spaced and flat metal electrodes in a fixed position. Placed above the plane of the metal electrodes is the sequential arrangement of a flexible insulator, a flexible electrode, and a flexible protective membrane. A capacitor is formed between the top flexible electrode and each of the lower and fixed-position flat metal electrodes. When the end of a finger is brought into contact with the flexible membrane, the flexible electrode becomes wavy in accordance with the fingerprints'ridges/valleys pattern.
In addition, U.S. Pat. No.5,325,442, incorporated herein by reference, relates to a capacitance type fingerprint sensor having a sensing pad that comprises a planar array of row/column sensing elements having a pitch of about 100 micrometers. Each sensing element is located at the intersection of a row conductor and a column conductor. A plurality of these sensing elements make up an array of regularly spaced, and relatively equal, size rectangles.
Each sensing element of this patent includes a first ungrounded, physically buried, and planar metal capacitor plate that is dielectric-spaced from an electrically grounded finger surface that forms a second capacitor plate, as shown in the circuit of this patent's FIG.
2
. In
FIG. 7
a
-
7
b
of this patent, the finger-engaging surface includes exposed and grounded metal film conductors
53
that physically engage the finger to ensure operation of the
FIG. 2
circuit by reliably grounding the finger, to thereby reliably ground the above-described second capacitor plate.
The sensing elements are fabricated using photolithographic processes, and each individual sensing element includes a Thin-Film-Transistor (TFT) in the form of a Field-Effect-Transistor (FET). Each FET gate is connected to a row conductor, each FET source is connected to a column conductor, an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrostatic discharge protection of a capacitve type... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrostatic discharge protection of a capacitve type..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrostatic discharge protection of a capacitve type... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2988172

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.