Electrophysiological probes having selective element...

Surgery – Instruments – Electrical application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S374000, C600S381000, C607S122000

Reexamination Certificate

active

06666864

ABSTRACT:

BACKGROUND OF THE INVENTIONS
1. Field of Inventions
The present inventions relate generally to medical devices that support one or more diagnostic or therapeutic elements in contact with body tissue.
2. Description of the Related Art
There are many instances where diagnostic and therapeutic elements must be inserted into the body. One instance involves the treatment of cardiac conditions such as atrial fibrillation and atrial flutter which lead to an unpleasant, irregular heart beat, called arrhythmia.
Normal sinus rhythm of the heart begins with the sinoatrial node (or “SA node”) generating an electrical impulse. The impulse usually propagates uniformly across the right and left atria and the atrial septum to the atrioventricular node (or “AV node”). This propagation causes the atria to contract in an organized way to transport blood from the atria to the ventricles, and to provide timed stimulation of the ventricles. The AV node regulates the propagation delay to the atrioventricular bundle (or “HIS” bundle). This coordination of the electrical activity of the heart causes atrial systole during ventricular diastole. This, in turn, improves the mechanical function of the heart. Atrial fibrillation occurs when anatomical obstacles in the heart disrupt the normally uniform propagation of electrical impulses in the atria. These anatomical obstacles (called “conduction blocks”) can cause the electrical impulse to degenerate into several circular wavelets that circulate about the obstacles. These wavelets, called “reentry circuits,” disrupt the normally uniform activation of the left and right atria.
Because of a loss of atrioventricular synchrony, the people who suffer from atrial fibrillation and flutter also suffer the consequences of impaired hemodynamics and loss of cardiac efficiency. They are also at greater risk of stroke and other thromboembolic complications because of loss of effective contraction and atrial stasis.
One surgical method of treating atrial fibrillation by interrupting pathways for reentry circuits is the so-called “maze procedure” which relies on a prescribed pattern of incisions to anatomically create a convoluted path, or maze, for electrical propagation within the left and right atria. The incisions direct the electrical impulse from the SA node along a specified route through all regions of both atria, causing uniform contraction required for normal atrial transport function. The incisions finally direct the impulse to the AV node to activate the ventricles, restoring normal atrioventricular synchrony. The incisions are also carefully placed to interrupt the conduction routes of the most common reentry circuits. The maze procedure has been found very effective in curing atrial fibrillation. However, the maze procedure is technically difficult to do. It also requires open heart surgery and is very expensive.
Maze-like procedures have also been developed utilizing catheters which can form lesions on the endocardium to effectively create a maze for electrical conduction in a predetermined path. The formation of these lesions by soft tissue coagulation (also referred to as “ablation”) can provide the same therapeutic benefits that the complex incision patterns that the surgical maze procedure presently provides, but without invasive, open heart surgery.
Catheters used to create lesions typically include a relatively long and flexible body portion that supports a soft tissue coagulation electrode on its distal end and/or a series of spaced soft tissue coagulation electrodes near the distal end. The portion of the catheter body that is inserted into the patient is typically from 23 to 55 inches in length and there may be another 8 to 15 inches, including a handle having steering controls, outside the patient. The length and flexibility of the catheter body allow the catheter to be inserted into a main vein or artery (typically the femoral artery), directed into the interior of the heart, and then manipulated such that the coagulation electrodes contact the tissue that is to be ablated. Fluoroscopic imaging is used to provide the physician with a visual indication of the location of the catheter.
Therapeutic lesions, whether formed alone or as part of a therapeutic lesion pattern, must often be formed in varying lengths to suit particular situations. In those instances where the catheter includes a single tip electrode, the physician must manipulate the catheter so that the tip electrode is dragged along the desired length of tissue during lesion formation. Such a technique is problematic because it is difficult to properly execute and often results in incomplete lesions, lesion gaps and tissue charring. Superior results have been obtained using catheters that support multiple electrodes. Here, some or all of the electrodes on the catheter may be selectively connected to an energy source to produce lesions of various lengths. The inventors herein have determined that, while superior to the drag technique, forming lesions of various lengths with conventional multiple electrode catheters can be inconvenient because such catheters require the use of a power supply and control device that is capable of selectively connecting some or all of the electrodes to the energy source.
SUMMARY OF THE INVENTION
An apparatus in accordance with one embodiment of one present invention includes a support structure, a plurality of longitudinally spaced conductive regions, and an actuation device including at least one electrical contact located within the support structure and movable between respective positions where the electrical contact is in electrical connection with a respective conductive region.
Such an apparatus provides a number of advantages over conventional apparatus. For example, lesions of various lengths and configurations may be produced by forming a portion of an overall lesion when the actuation device is in one position, then moving the actuation device to another position to form an additional portion of the lesion, and so on until the desired lesion is formed. As a result, the apparatus allows physicians to selectively actuate some or all of the conductive regions to form a variety of lesions without having to use a power supply and control device that is itself capable of selectively connecting some or all of the conductive regions to an energy source. Additionally, because such an apparatus also allows lesions of varying length to be created without moving the support structure, the precise positioning of the apparatus will not be compromised and the unintended ablation of non-target tissue will be prevented.
The above described and many other features and attendant advantages of the present inventions will become apparent as the inventions become better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings.


REFERENCES:
patent: 4476872 (1984-10-01), Perlin
patent: 4483574 (1984-11-01), Chabrerie et al.
patent: 4744370 (1988-05-01), Harris
patent: 5607422 (1997-03-01), Smeets et al.
patent: 5824030 (1998-10-01), Yang et al.
patent: 5826576 (1998-10-01), West
patent: 6017338 (2000-01-01), Brucker et al.
patent: 6238390 (2001-05-01), Tu et al.
patent: 6241727 (2001-06-01), Tu et al.
patent: 2002/0099428 (2002-07-01), Kaufman

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrophysiological probes having selective element... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrophysiological probes having selective element..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrophysiological probes having selective element... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3150940

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.