Electrophoresis

Chemistry: electrical and wave energy – Processes and products – Electrostatic field or electrical discharge

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

2041829, 2041828, 2041801, G01N 2726, G01N 27447

Patent

active

053207270

DESCRIPTION:

BRIEF SUMMARY
FIELD OF THE INVENTION

This invention relates to electrophoresis.


BACKGROUND TO THE INVENTION

Electrophoresis is a well known separation technique which separates charged units on the basis of differential mobility in an electric field (which depends on the size, shape and charge of the units), and is widely used for separation of proteins and other materials. A variant of electrophoresis known as isoelectric focusing (IEF) exploits the fact that the net charge on a protein molecule varies with the pH of the surrounding solution. At a pH that is characteristic for each protein there exists an isoelectric point (IEP) at which the protein has no net charge and therefore will not migrate in an electric field. In IEF, electrophoresis is carried out in a pH gradient established by use of buffer mixtures, commonly using carrier ampholytes, and each protein migrates to the position in the gradient that corresponds to its isoelectric point and then remains there.
Two dimensional (2D) electrophoresis techniques are also known, involving a first electrophoretic separation in a first dimension, followed by a second electrophoretic separation in a second, transverse dimension. The 2D method most commonly used is that based on the work of O'Farrell (reference 1) in which proteins are subjected to IEF in a polyacrylamide gel in the first dimension, resulting in separation on the basis of isolectric point, and are then subjected to polyacrylamide gel electrophoresis in the second dimension in the presence of sodium dodecyl sulphate (SDS), resulting in further separation on the basis of size.
Two dimensional polyacrylamide gel electrophoresis (2D-PAGE) is at present the most highly resolving method for the analysis of protein mixtures. Using this technique it is possible to separate several thousand individual polypeptide chains from a single sample in a single electrophoretic analysis. Methods which enable this are well established, used widely and all of the necessary equipment and reagents can be obtained readily from commercial sources.
Proteins are detected usually by staining either by a dye, which is most commonly Coomassie Brilliant Blue R-250 (C.I. 42660), or by deposition of metallic silver. Alternatively proteins which have been radiolabelled before analysis either in vivo or in vitro, for instance by reductive methylation (reference 2), can be detected by autoradiography or fluorography. The radiolabelling method is the only one which is at present available in which proteins can be labelled before analysis by 2D-PAGE in which IEF is used as the first dimension.
Fluorophores have also been used to label proteins both before and after PAGE. Several papers have described prelabelling methods for 1D-PAGE (reference 3). The advantages of pre- over post-electrophoretic labelling are the possibility of viewing the separation during the electrophoresis, the ease of detecting the results at the end without further processing of the gel, the ease of viewing gels of various sizes and thickness, the avoidance of problems associated with handling delicate gels, the avoidance of losing small molecules from the gel during staining, the high sensitivity which can be achieved, and the avoidance of use of radioactive materials.
Recently the fluorophore labelling of proteins present in IEF gels has been described which enabled the subsequent generation of a fluorescent 2D-electrophoretogram. The method allows normal IEF to be combined with the advantages of pre-electrophoretic fluorescent labelling (reference 4).
Another recent paper (reference 5) describes in vivo monitoring of protein sulphydryl (SH) groups of hamster spermatazoa by labelling with the fluorescent material monobromobimane and 2-D electrophoretic analysis. The first dimension uses non-equilibrium pH gradient electrophoresis (NEPHGE), followed by SDS-PAGE in the second dimension. In NEPHGE a pH gradient is generated but proteins are loaded at the acidic end of the gel, are positively charged and do not reach their IEPs. The method is used for analysing prote

REFERENCES:
Egil Jellum et al "Capillary Electrophoresis for Diagnosis and Studies of Human Disease, Particularly Metabolic Disorders" Journal of Chromatography, 559 (1991) 455-465.
Barry L. Hogan and Edward S. Yeung "Determination of Intracellular Species at the Level of a Single Erythrocyte via Capillary Electrophoresis with Direct and Indirect Fluorescence Detection".
Nechama S. Kosower et al "Bimane Fluorescent Labels, Characterization of the Bimane Labeling of Human Hemoglobin" Biochimica et Biophysica Acta 622 (1980) 201-209.
Nechama S. Kosower et al "Dynamic Changes of Red Cell Membrane Thiol Groups Followed by Bimane Fluorescent Labelling" Biochimica et Biophysica Acta, 640 (1981) 748-759.
Arduino Arduini and Arnold Stern "Spectrin Degradation In Intact Red Blood Cells by Phenylhydrazine" Biochemical Pharmacology, vol. 34, No. 24 (1985) 4283-4289.
G. E. Neal et al "Conjugation of Model Substrates of Microsomally-Activated Aflatoxin B, with Reduced Glutathione, Catalyzed by Cytosolic Glutathione-S-Transferases In Livers of Rats, Mice, and Guinea Pigs" Biochemical Pharmacology, vol. 36, No. 24 (1987) 4269-4276.
Kalomiris, "Thiol-specific probes indicate that the beta-chain of platelet . . . (etc.)", Biochemistry, vol. 24, No. 20, Sep. 24, 1985, pp. 5430-5436.
Kosower, "Bimane fluorescent labels characterization of the bimane labeling of human hemoglobin", Chemical Abstracts, vol. 93, No. 5, Aug. 4, 1980.
Cornwall, "Characterization of sulphydryl proteins involved in the maintenance of flagellar . . . (etc.)", Medline on line abstracts, abstract No. 90216425.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrophoresis does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrophoresis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrophoresis will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1246719

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.