Coherent light generators – Particular beam control device – Tuning
Reexamination Certificate
2008-05-06
2008-05-06
Andujar, Leonardo (Department: 2826)
Coherent light generators
Particular beam control device
Tuning
C372S102000, C372S106000
Reexamination Certificate
active
11144482
ABSTRACT:
A device contains at least one wavelength-tunable element controlled by an applied voltage and at least two resonant cavities, where the resonant wavelength of the tunable element is preferably elecrooptically tuned using the quantum confined Stark effect around the resonant wavelength of the other cavity or cavities, resulting in a modulated transmittance of the system. A light-emitting medium is preferably introduced into one of the cavities, permitting the optoelectronic device to work as an intensity-modulated light-emitting diode or diode laser by applying an injection current. The device preferably contains at least three electric contacts to apply a forward or a reverse bias and may operate as a vertical cavity surface emitting light-emitter or modulator or as a tilted cavity light emitter or modulator. Adding a few modulator sections enables applications in semiconductor optical amplifiers, frequency converters or lock-in optical amplifiers.
REFERENCES:
patent: 3760292 (1973-09-01), Kogelnik et al.
patent: 4740987 (1988-04-01), McCall, Jr. et al.
patent: 5264715 (1993-11-01), Guenter et al.
patent: 5519721 (1996-05-01), Takano
patent: 5574738 (1996-11-01), Morgan
patent: 5757837 (1998-05-01), Lim et al.
patent: 5779924 (1998-07-01), Krames et al.
patent: 5973336 (1999-10-01), Hanke et al.
patent: 5976905 (1999-11-01), Cockerill et al.
patent: 6001664 (1999-12-01), Swirhun et al.
patent: 6026108 (2000-02-01), Lim et al.
patent: 6154480 (2000-11-01), Magnusson et al.
patent: 6160834 (2000-12-01), Scott
patent: 6285704 (2001-09-01), Kullander-Sjoberg et al.
patent: 6363093 (2002-03-01), Glance
patent: 6392256 (2002-05-01), Scott et al.
patent: 6396083 (2002-05-01), Ortiz et al.
patent: 6455340 (2002-09-01), Chua et al.
patent: 6611539 (2003-08-01), Ledentsov et al.
patent: 6643305 (2003-11-01), Bewley et al.
patent: 2002/0186726 (2002-12-01), Ledentsov et al.
patent: 2003/0152120 (2003-08-01), Ledentsov et al.
patent: 2003/0206741 (2003-11-01), Ledentsov et al.
patent: 2005/0040410 (2005-02-01), Ledentsov et al.
patent: 0342953 (1989-11-01), None
patent: 0635893 (1999-01-01), None
patent: 2215075 (1989-09-01), None
patent: 06-314846 (1994-08-01), None
patent: 2003-121637 (2003-04-01), None
Fischer et al “Coupled resonator vertical-cavity laser diode” Applied Physics Letters, (Nov. 1999): 3020-3022.
Woodward “Sequential Vs. Coherent Tunneling in Double Barrier Diodes Investigated by Differential Absorption Spectroscopy” IEEE (1990): 13.7.1-13.7.4.
Gupta, Mool C. Handbook of Photonics. Florida: Boca Raton, 1996.
Borges, Ric. “Gallium nitride electronic devices for high-power wireless applications” <http://www.rfdesign.com>.
Fischer et al “Coupled resonator vertical-cavity laser diode” American Institure of Physics,(Nov. 1999):3020-3022.
Borges “Gallium nitride electronic devices for high-power wireless applications” RF semiconductors, Sep. 2001 <www.rfdesign.com.
H.C. Casey, Jr. and M.B. Panish, “Heterostructure Lasers”, Part A, Academic Press, New York, 1978, pp. 34-57, 165-167.
A. Yariv, P. Yeh, “Optical Waves in Crystals. Propagation and Control of Laser Radiation”, Wiley 1984.
Annual Report of Heinrich Hertz Institute, 2003, http://www.hhi.fraunhofer.de/english/.
V. Bardinal, R. Legros, and C. Fontaińe, “In situ measurement of AIAs and GaAs refractive index dispersion at epitaxial growth temperature”,Applied Physics Letters, vol. 67 (2), pp. 244-246 (1995).
D.E.Aspnes (Physical Review, B14 (12), pp. 5331-5343 (1976)).
Ledentsov, Nikolai N., “Nanostructures How Nature Does It”, Educational Centre at IOFFE Institute Invited Lecture. Oct. 13, 2000. Http://web.edu.ioffe.ru/lectures/index—en.html.
Deppe, D.G., 2000; Optoelectronic Properties of Semiconductors and Superlattices:, vol. 10, Vertical-Cavity Surface-Emitting Lasers: Technology and Applications; pp. 1-61.
Meade, R.D. et al; 1993; “Accurate theoretical analysis of photonic band-gap materials”; Physical Review B 48:11, pp. 8434-8437.
Born, M. et al; 1980; “Principles of Optics”; 6thedition, Pergamon Press, pp. 1-70.
N.N. Ledentsov and V.A. Shchukin. “Novel concepts for Injection Lasers” Opt. Eng. vol. 41, No. 12, 2002, p. 3193-3203.
N.N. Ledentsov and V.A. Shchukin. “Novel Approaches to Semiconductor Lasers” Proceedings of SPIE, vol. 4905, 2002, p. 222-234.
A.G. Weber, Wu Ronghan and D. Bimberg “High-frequency response of p-substrate buried crescent InGaAsP lasers” J. Appl. Phys. 68, 2499 (1990).
D. Tauber, G. Wang, R. S. Geds, J. E. Bowers, and L. A. Coldren, “70 GHz relaxation oscillation in vertical cavity surface emitting laser,”IEEE Trans. Electron. Devices, 39, p. 2652 (1992).
D. Tauber , G. Wang, R.S. Geds, J.E. Bowers, L.A. Coldren, “70 GHz relaxation oscillation in a vertical cavity surface emitting laser”Device Research Conference, 1992. Digest. 50th Annual, Jun. 22-24, 1992 pp. 0—81-0—82.
S. M. Kim, Y. Wang, M. Keever, and J. S. Harris “High-Frequency Modulation Characteristics of 1.3- m InGaAs Quantum Dot Lasers”IEEE Phot. Technol. Lett. 16, pp. 377-379, (2004).
S. Weisser, E.C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J.D. Ralston, B. Romero, R.E. Sah, A. Schonfelder, J. Rosenzweig, “Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers” IEEE Photon. Technol. Lett. 8, pp. 608-610 (1996).
T. Yoshie, O. Painter, A. Scherer, D. Huffaker, D. Deppe, “Photonic crystal defect microcavities with indium arsenide quantum dots” Lasers and Electro-Optics Society 2000 Annual Meeting. LEOS 2000. 13th Annual Meeting. IEEE , vol. 2, Nov. 13-16, 2000 pp. 415-416 vol. 2.
N. Ledentsov, D. Bimberg, V. M. Ustinov, M V Maximov, Zh. I. Alferov, V. P. Kalosha and J. A. Lott “Interconnection between gain spectrum and cavity mode in a quantum dot vertical cavity laser”Semicond. Sci. Technol. 14, pp. 99-102 (1999).
R. King “2D VCSEL Arrays for Chip-Level Optical Interconnects” Annual report 1999, Dept. of Optoelectronics, University of Ulm.
A. N. Al-Omari, K. L. Lear, “Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth”IEEE Photon. Technol. Lett., vol. 16, pp. 969-971 (2004).
P. Pepeljugoski, D. Kuchta.; Y. Kwark, P. Pleunis, G. Kuyt, 15.6-Gb/s transmission over 1 km of next generation multimode fiber,IEEE Photon. Technol. Lett. 14 pp. 717-719 (2002).
D.M. Kuchta, P. Pepeljugoski, Y. Kwark, “VCSEL modulation at 20 Gb/s over 200 m of multimode fiber using a 3.3 V SiGe laser driver IC”Advanced Semiconductor Lasers and Applicants/Untraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Components, 2001 Digest of the LEOS Summer Topical Meetings, Jul. 30-Aug. 1, 2001 pp. 2 pp.
Won-Jin Choi, A.E. Bond, Jongwoo Kim, Jiaming Zhang, R. Jambunathan, H. Foulk, S. O'Brien, J. Van Norman, D. Vandergrift, C. Wanamaker, J. Shakespeare, He Cao “Low insertion loss and low dispersion penalty InGaAsP quantum-well high-speed electroabsorption modulator for 40-Gb/s very-short-reach, long-reach, and long-haul applications”Journal of Lightwave Technology 20, pp. 2052-2056 (2002).
N. Mineo, K. Yamada, K. Nakamura, S. Sakai, and T. Ushikubo, “60-GHz band electroabsorption modulator module,” inProc. OFC 1998, ThH4.
F. Devaux. P. Bordes, A. Ougazzaden, M. Carre, and F. Huff, “Experimental optimization of MQW electroabsorption modulators with up to 40GHz bandwidths,”Electron. Lett., vol. 30, pp. 1347-1348 (1994).
A.H. Steinbach, I. Penn, , N. Chokshi D. Martin, , K. Slomkowsk, W. Baun, N. Agrawal, R. Ben-Michael, M.A. Itzler, “Equivalent circuit modelling of p-i-n photodiodes for 40 Gb/s receivers” Lasers and Electro-Optics Society, 2002. LEOS 2002. The 15th Annual
Ledentsov Nikolai
Shchukin Vitaly
Andujar Leonardo
Brown & Michaels PC
Innolume GmbH
Yeung-Lopez Feifei
LandOfFree
Electrooptically wavelength-tunable resonant cavity... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electrooptically wavelength-tunable resonant cavity..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrooptically wavelength-tunable resonant cavity... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3915170