Electrooptical coupling component

Optical waveguides – With disengagable mechanical connector – Optical fiber to a nonfiber optical device connector

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S092000, C385S137000

Reexamination Certificate

active

06250820

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention is in the field of multichannel electrooptical connections and relates to an electrooptical coupling component, including a first substrate with a first alignment device and a plurality of optical waveguides located in one plane and having coupling-side end surfaces causing a beam deflection to optically active surfaces of a multichannel electrooptical converter, the optically active surfaces oriented toward the optical waveguides, and a second substrate with a second alignment device tuned or matched to the first alignment device of the first substrate, the electrooptical converter positioned on the second substrate independently of the optical waveguides and precisely with respect to the second alignment device.
Within the scope of the invention, an optical waveguide is understood to mean any device for carrying an optical signal in a three-dimensionally defined, guided way, especially ready-made optical waveguides and so-called fiber optics. In addition, an electrooptical converter is understood as both a transmitting and a receiving element (for instance light emitting diodes, surface emitting laser diodes, and photo diodes), in which the optically active surface of the converter for a transmitter is a light-emitting surface, while for a receiver it is a light-sensitive surface.
An optical transmitting and receiving device with a first substrate is known from European Patent Application EP 0 713 112 A1. A transmitter element is disposed on the first substrate in a recess. A second substrate is provided with a groove, in order to receive an optical waveguide on its lower surface. The optical waveguide ends at a protrusion having a triangular cross section that extends crosswise to the groove. The protrusion divides the groove from a recess on a lower surface of the second substrate. The two substrates are disposed on opposed sides of an intermediate body. The first substrate has its transmitter element facing a lower surface of the second substrate. Coupling of the optical waveguide to the transmitter element is accomplished by reflection of the beam, emitted by the transmitter element, from one side of the protrusion. A lens that focuses the beam is additionally provided on the intermediate body for adequate coupling efficiency. The alignment of the two substrates with one another is carried out through the use of adjusting balls, which cooperate with indentations in the intermediate body and in the substrate. The transmitting and receiving device is complicated to produce because the adjustment balls have to be manipulated as separate elements, and it involves losses because the beam has to penetrate the intermediate body.
An article entitled “Photonic Interconnections: More Bandwidth, Less Real Estate” by Eric R. Fossum, in PHOTONICS SPECTRA, May 1987, pages 151-157, describes an electrooptical coupling component with a first silicon substrate into which V-shaped grooves are etched. Ends of optical waveguides placed in the grooves are polished obliquely along with an end surface of the silicon substrate. Radiation guided in the ends of the optical waveguides reaches planar-structured optical receivers by way of the thus-formed oblique end surfaces. The lateral adjustment of the optical waveguides with respect to the receivers that is required for high coupling efficiency, is comparatively complicated and expensive and is not described in detail in that article.
U.S. Pat. No. 5,535,296 describes an electrooptical coupling component with a bottom substrate, on which a first substrate with a plurality of optical waveguides disposed in the same plane and a second substrate with electrooptical converters, are disposed. The two substrates are aligned with one another with the aid of two alignment pins, which are introduced into precision-made openings of the first substrate. The row in the second substrate is dimensioned to fit the clearance between the two pins exactly. The beam path extends in a straight line between the ends of the optical waveguides and the associated optically active surfaces of the converters.
An electrooptical coupling component of the type defined at the outset is found in European Patent Application EP 0 699 931 A1. A first substrate includes optical waveguides having end surfaces that are beveled. An electrooptical converter is mounted on a second substrate in such a way that the optically sensitive surfaces of the converter face away from the second substrate. Beams emitted by the converter are coupled-in by total reflection from the end surface of the respectively associated optical waveguide. Metallizings corresponding to one another are provided both on the first and the second substrates and on the converter and the second substrate for jointly aligning the converter in the first substrate. The metallizings are disposed in such a way that if corresponding metallizings are superimposed congruently, the optical waveguides and converters are aligned with one another. The surface tension of solder that moistens the metallizings is utilized and the solder liquefies upon assembly and then solidifies. The incident thermal strains can cause a misadjustment after the two substrates have been assembled.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide an electrooptical coupling component, which overcomes the hereinafore-mentioned disadvantages of the heretofore-known devices of this general type and which allows simple, tension-free adjustment of optical waveguides and converters to one another.
With the foregoing and other objects in view there is provided, in accordance with the invention, an electrooptical coupling component, comprising a first substrate formed as a molded synthetic-material body having a first alignment device formed by oblique surfaces; a second substrate having a second alignment device matched or tuned to the first alignment device and formed by oblique surfaces corresponding to the oblique surfaces of the first alignment device; a plurality of optical waveguides disposed in one given plane on the first substrate and having coupling-side end surfaces and longitudinal axes; and a multichannel electrooptical converter positioned on the second substrate independently of the optical waveguides and precisely relative to the second alignment device, the multichannel electrooptical converter having optically active surfaces oriented toward the coupling-side end surfaces of the optical waveguides; the coupling-side end surfaces of the optical waveguides causing a beam deflection to the optically active surfaces of the multichannel electrooptical converter; the oblique surfaces having one dimension extended parallel to the longitudinal axes of the optical waveguides, the oblique surfaces located in planes intersecting the given plane of the optical waveguides, and the oblique surfaces form-lockingly engaged with each other for laterally adjusting the end surfaces of the optical waveguides relative to the optically active surfaces of the multichannel electrooptical converter. A form-locking connection is one which connects two elements together due to the shape of the elements themselves, as opposed to a force-locking connection, which locks the elements together by force external to the elements.
According to the invention, the alignment of the optical waveguide and converter to one another is accomplished by the mechanical interaction of the surfaces corresponding to one another on the substrates. The configuration of the invention advantageously makes do without separate, additional adjusting bodies. The form-locking engagement of the surfaces brings about the alignment of the two substrates with one another, at least in two dimensions. The surfaces allow only a relative freedom of motion of the first substrate with respect to the second substrate in the longitudinal direction of the optical waveguides. Through the use of an additional stop on the second substrate, for instance, the first substrate is also positioned with this same degree of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrooptical coupling component does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrooptical coupling component, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrooptical coupling component will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2487775

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.