Electronically controlled viscous fan drive

192 clutches and power-stop control – Clutches – Fluent material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C192S058800

Reexamination Certificate

active

06752251

ABSTRACT:

TECHNICAL FIELD
The invention relates generally to fan drive systems and more specifically to an electronically controlled viscous fan drive.
BACKGROUND ART
The present invention relates to fluid coupling devices of the type including both fluid operating chamber and a fluid reservoir chamber, and valving which controls the quantity of fluid in the operating chamber.
Although the present invention may be used advantageously in fluid coupling devices having various configurations and applications, it is especially advantageous in a coupling device of the type used to drive a radiator cooling fan of an internal combustion engine, and will be described in connection therewith.
Fluid coupling devices (“fan drives”) of the viscous shear type have been popular for many years for driving engine cooling fans, primarily because their use results in substantial saving of engine horsepower. The typical fluid coupling device operates in the engaged, relatively higher speed condition only when cooling is needed, and operates in a disengaged, relatively lower speed condition when little or no cooling is required.
For many years, one of the problems associated with fluid coupling devices used to drive radiator cooling fans has been the phenomenon known as “morning sickness”. A typical viscous fan drive includes one or more fill openings, through which viscous fluid flows from the reservoir into the operating chamber, and one or more discharge openings through which fluid is pumped from the operating chamber back into the reservoir. After the fan drive has been operating for a period of time, and the engine is turned off, the fan drive ceases rotation. When the fan drive stops rotating, the orientation of the fill and discharge openings is completely unpredictable, i.e., the fill opening could be in the three o'clock position and the discharge opening could be in the nine o'clock position, in which case there would probably be relatively little “drain back” or “bleed back”, i.e., a flow of fluid from the reservoir back into the operating chamber.
However, the fan drive could stop with the discharge opening in the six o'clock position and the fill opening in the twelve o'clock position, in which case the discharge opening would be beneath the level of fluid in the reservoir. When this situation occurs, it has been conventional for a certain amount of fluid to bleed back from the reservoir through the discharge opening, into the operating chamber. Then, when the operation of the fan would begin again, after a long period of time (for example, the next morning), with a substantial amount of fluid in the operating chamber, even though the engine was cold and no cooling was required, the fan drive would initially operate in the engaged condition for a period of time until most of the fluid in the operating chamber is pumped back into the reservoir. Unfortunately, such engaged operation results in an undesirable noise of the fan being driven when it is not required. It is this phenomenon, most common and perhaps most objectionable in the morning, which has been referred to as “morning sickness”.
Several substantial improvements to overcome the problem of morning sickness have been developed by the assignee of the present invention, such solutions being described and illustrated in U.S. Pat. Nos. 4,312,433 and 5,101,950, both of which are assigned to the assignee of the present invention and incorporated herein. In both of the cited patents, the general approach to the problem of morning sickness has been to configure the discharge flow path (i.e., the path from the operating chamber, past the pump out means and back to the reservoir) such that fluid in the reservoir would be unable to flow backwards through the discharge path and into the operating chamber, regardless of the rotational orientation of the fan drive during periods of engine shut down.
Unfortunately, it has been observed that, even in the presence of anti-bleed back solutions in the above-cited patents, a certain amount of bleed back or drain back can still occur through the fill opening whenever, for example, the fan drive stops rotating with the fill opening is in the six o'clock position (i.e., below the fluid level) and the discharge opening in the twelve o'clock position. As is well known to those of skill in the art, the fill hole needs to be near the radially outer periphery of the reservoir chamber, in order to facilitate filling of the operating chamber, but then, the fill hole is even more likely to be well below the fluid level in the reservoir chamber. The bleed back through the fill opening can occur in one of three ways. First, if, as a result of manufacturing inaccuracies or otherwise, the valve arm does not seal tightly over the fill opening, bleed back will occur. Second, if the ambient air temperature around the fan drive is relatively high when the fan drive stops rotating, the valve arm will open (or remain open) and allow fluid to flow from the reservoir into the operating chamber. Third, an electronically controlled fan drive this is of the “fail-safe ON” type will have its valve opened when the electrical power is turned off.
One method for eliminating morning sickness is described in U.S. Pat. No. 6,085,881, which is assigned to the assignee of the present invention and incorporated herein. In this cited patent, an accumulator plate is provided that is attached to the cover and defines an accumulator chamber within the operating chamber. When the engine is turned off, any fluid draining from the reservoir back through the fill hole is contained within the accumulator chamber and prevented from flowing directly into the viscous shear chamber. After the engine is started, fluid flows back from the accumulator chamber and fills the shear chamber in the normal manner.
However, the weakness with this design is that an accumulator plate is need to close the accumulator and reservoir. This is a potential leakage point. Further, the location of the accumulator requires back side machining that adds to the cost of the fan drive.
It is thus highly desirable to provide a viscous shear plate that further eliminates leakage points and eliminates costly machining.
SUMMARY OF THE INVENTION
The present invention addresses some of the issues described above by providing an electronically controlled viscous fan drive system having a one-piece accumulator and reservoir located on the top side of the clutch. The accumulator also has a low pressure and high pressure fill hole for allowing movement of viscous fluid from the reservoir to a antibleedback chamber and into the operating and working chamber of the coupling during normal operation. A radially balance valve disk having a step up feature coupled to a spring and an actuator electronically controls movement of viscous fluid from the reservoir to the antibleedback chamber through the fill holes by energizing or deenergizing the spring based on engine operating conditions. The step up feature of the valve disk allows a more controlled flow of viscous fluid by allowing the opening of the low pressure and high pressure fill holes separately as a function of valve disk positioning. For example, the actuator may be electronically activated to pull the spring downward, thereby closing the high pressure and/or low pressure fill holes to prevent viscous fluid movement to the operating chamber, during engine on conditions when engine operating conditions require no clutch engagement (i.e. no cooling required from the viscous fan drive).
In addition, by biasing the valve disk to allow viscous fluid to pass through the low pressure and high pressure fill holes during engine on conditions and no electrical activation, the present invention is failsafe to prevent damage to engine components if there is malfunctioning of the actuator or a loss of electrical power to the actuator.
The antibleedback chamber in the accumulator also prevents morning sickness in the fluid coupling device regardless of the positioning of the accumulator when the engine is turned off

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronically controlled viscous fan drive does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronically controlled viscous fan drive, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronically controlled viscous fan drive will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3360259

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.