Electronically controlled engine generator set

Prime-mover dynamo plants – Electric control – Engine control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C290S04000F, C220S023880

Reexamination Certificate

active

06825575

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention is related to the field of electric power production using combustion engines. It is further related to methods of control of electric power systems responding to load changes.
BACKGROUND OF THE INVENTION
In an engine/generator system, the fuel supply to the prime mover is directly controlled by an actuator means, generally with a throttle or injection pump. Fuel supply adjustment is a method of adjusting the torque/speed characteristics of the prime mover. As the throttle is closed or the fuel injection setting reduced, the torque produced at a given rotational velocity is similarly reduced, causing the system to slow down, while wide open throttle maximizes the torque and power output at a given speed. In conventional engine/generator systems, the speed of the system is controlled by altering the torque/speed characteristic of the prime mover. This results in engine inefficiency.
An additional cause of engine inefficiency is friction. As the piston moves through the cylinder, work must be done because of friction between the piston and the cylinder. Every time the piston moves through a stroke, some energy is lost, regardless of engine power output for that piston stroke. The greater the energy output per piston stroke, the less energy lost to friction as compared to energy output.
Other sources of engine inefficiency are parasitic loads such as oil pumps and the like, which vary with engine speed, but not power output. The higher the RPM of the engine, the more energy lost to these loads, regardless of actual engine power output. Parasitic loads and cylinder friction mean that for constant power output, lower RPM will generally be more efficient.
Background Hybrid Electric Vehicles
A partial solution for inefficiency during low demand is found in systems comprising an energy storage unit (such as a battery) besides the engine-generator system. An example for such system is the Hybrid Electric Vehicle (HEV), in which the solution for the inefficient low load mode is simply to turn the engine and generator off. The power demand is supplied by the battery until a higher demand is required or until the battery reaches a low energy level. The engine and the generator are then turned on to recharge the battery and to supply power, directly or via the battery, to the vehicle.
Attempts to deal with engine inefficiency, such as with the hybrid electric vehicle have not been successful. HEVs have a problem in that involved in their usage is a substantial amount of restarting of the engine and generator, which releases fumes and is a particularly inefficient period in engine operation. Secondly, when the engine is turned off, a great amount of inertial energy is lost. This results in a waste of energy, invested in regaining the inertial energy, when the engine is restarted. Third, no currently available energy storage system is perfect; more energy must be supplied to the energy storage system than is later removed as useable electricity, with the difference being lost as heat. Energy storage systems also have limited life, in terms of number of charge/discharge cycles, and aging due to deep discharge. Even in the hybrid electric vehicle, there is substantial utility to a wide range of generator power output, providing efficiency can be maintained over this range.
Background Electrical Power Conversion
Methods for the conversion of electrical power at a given voltage, current, and frequency, to electrical power at a different voltage, current, or frequency are well known in the art. The simplest device, the transformer, is used to trade voltage for current with little loss of power to inefficiency.
Other devices convert input electrical power to an output electrical power via intermediate mechanical form, or from alternating current to alternating current of different characteristics via intermediate direct current. Power electronics are devices that usually contain transistors or similar components, and use switches to vary the electrical characteristics of their output, according to requirements. These include many variations, some of which are the bipolar transistor, the darlington pair of transistors, the field effect transistor, the pulse width modulated DC controller, the Silicon Controlled Rectifier, the DC link converter, the insulated gate bipolar transistor, the silicon controlled rectifier, the MOS controlled thyristor, as well as optically driven devices, vacuum devices, gas filled devices, and even mechanical devices. Power electronic devices can often act as variable pseudo-resistance, that is they can create voltage/current output relationships without dissipating power in the fashion of an actual resistor. The Silicon Controlled Rectifier can control how much AC power is delivered to a load.
Background Electric Generators' Control Apparatus
Electric control systems for generators are well known in the field of the art. Output of a desired frequency, voltage and current can either be achieved by controlling the operational state of the generator, or by converting the native output power of the generator to the desired voltage, frequency, current, or otherwise characterized output power.
Output characteristics of a generator are not independent, and are related by load considerations and generator internal characteristics. For example, a DC generator feeding a resistive load, when under circumstances that increase the output voltage of the generator, will also experience an increase in current flow. Often various changes in output are described with other output aspects held constant.
Engine-generator Systems and Power Equilibrium
Engine-generator systems, in which an engine is directly mechanically linked to a generator, and providing the generator with power in the forms of torque and speed, turn at a fixed speed relation. Torque supplied by the engine is not necessarily equal to the torque absorbed by the generator. If, due to some perturbation, the generator is unable to absorb all the torque that the prime mover provides, a potentially dangerous situation may arise, for the system is not operating in equilibrium. Usually, it is the speed of the engine, and with it, the speed of the generator, which will change when the system is not operating in equilibrium, and in the case mentioned above, the speed of the system will probably increase. Sometimes the fixed mechanical linkage between the engine and generator includes some sort of gearing or mechanical advantage. In this case, then when the system is operating in equilibrium, there will be an equilibrium between the individual linkages between motor and gearing mechanism, and between gearing mechanism and generator.
The term “torque load”, in the course of this specification, is used to mean the amount of torque which the generator absorbs from the engine or other prime mover, to which it is connected. It is also described as the torque in the direction counter to rotation that the generator applies to a transmission with the prime mover. A negative torque load would refer to a torque in the direction of rotation (i.e. the generator acting as a motor). The “torque of the generator” refers to the torque applied by the generator to the prime mover, in the direction of, or counter to, rotation. The prime mover in most cases may be an engine, but the term engine is used in the course of this specification to also refer to other prime movers which behave similarly to engines, with the characteristics which will be henceforth described.
An example of how torque equilibrium, or lack thereof, can affect speed, is shown in starting an engine-induction generator system, in which the induction generator is supplying electricity to a fixed frequency, fixed voltage, electrical load. When an engine-generator system is started, the speeds of the engine and generator are in fixed relation to each other, but the torques of the individual parts of the system are not. The engine is producing a torque in the direction of rotation, and for equilibrium, the generator would have

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronically controlled engine generator set does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronically controlled engine generator set, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronically controlled engine generator set will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3330231

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.