Electronically commutable motor, in particular, for a liquid...

Electricity: motive power systems – Switched reluctance motor commutation control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C318S268000, C318S471000, C318S811000

Reexamination Certificate

active

06710558

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to an electronically commutatable motor, in particular for a fluid pump, in which the excitation windings may be connected to a DC supply voltage and disconnected therefrom via semiconductor switches controlled by control signals of a commutation device, and in which the control signals of the commutation device are clocked by pulse width modulatable output signals of a PWM generator, the pulse width ratio of which may additionally be modified as a function of the output signal of the temperature sensor.
BACKGROUND INFORMATION
A motor of this kind is described in U.K. Published Patent Application NO. 2 260 785. The motor drives a fan. In that context, the ambient temperature in a room is measured and is compared to a defined temperature, for example, a desired room temperature. The two temperature values are compared to one another, and the comparison signal modifies the activation signal for the motor. The activation signal is generated by a PWM generator, and the pulse width ratio is modified as a function of the comparison signal. As described in German Published Patent Application No. 196 30 036 in the context of a control switch, the pulse width ratio can be defined with a first clock frequency up to a defined temperature value, and with a second, lower clock frequency when that temperature value is exceeded. This is intended to result in smaller dimensions for the cooling device of the control switch.
It is also conventional to switch off an electronically commutatable motor when a definable limit temperature is reached, as described in German Published Patent Application No. 21 17 639 in the context of a current-monitored motor. The motor current is directed through a temperature-dependent component.
It is an object of the invention to provide a motor in which the output signal of the temperature sensor may be used, in simple fashion, for a first operating state over a wide control range of delivery volumes of a fluid pump, and serves as a protective signal only in a critical terminal range.
SUMMARY
This object is achieved, according to the present invention, in that the temperature sensor monitors the temperature in the housing chamber of the fluid pump; in that up to a defined or definable temperature, the PWM generator operates with a defined or definable operating pulse width ratio; in that after that temperature is exceeded, the PWM generator modifies the pulse width ratio as a function of the output signal of the temperature sensor; and in that when a limit temperature in the housing chamber is reached, the output signal of the temperature sensor causes the motor to be switched off by way of the PWM generator.
If the temperature remains below the first defined or definable temperature value, control may then occur optimally in the control loop, with no risk of overmodulating the motor, until that temperature is reached. If the defined first temperature is exceeded, the motor then enters a critical operating range and is protected from overload by modification of the pulse width ratio of the activation signals. A further defined temperature value serves to switch off the motor if the modification of the pulse width ratio is insufficient to stabilize operation and the motor could in fact be overloaded. This guarantees reliable, safe, and optimal operation of the motor of a fluid pump up to a critical temperature value, in which context the influence of the delivered fluid volume on heating of the motor may be taken into account by the manner in which the pulse width ratio of the activation signals is modified.
The use of a PWM generator with a variable pulse width ratio makes it possible to control the output of the motor. The fluid flow not only may be predefined, but also is automatically coupled to the temperature sensed by the temperature sensor in the housing chamber, and may be modified as a function thereof. The dependence may be selected so that the pulse width ratio increases or decreases as the temperature in the housing chamber rises.
The fluid flow may increase with rising temperature and may be used for greater cooling of the motor. It is also possible, however, to reduce the output of the motor, and thus the fluid flow, as the temperature rises. This depends on the utilization of the motor and the operating conditions.
Only the PWM generator is required as an additional component for these additional functions of the motor.
According to one example embodiment of the present invention, the temperature-dependent output signal for the PWM generator may be derived from the fact that an NTC resistor incorporated into a voltage divider is usable as the temperature sensor, and a voltage drop that decreases with increasing temperature may be picked off at the voltage divider as the output signal, or by the fact that a PTC resistor incorporated into a voltage divider is used as the temperature sensor, and a voltage drop that increases with increasing temperature may be picked off at the voltage divider as the output signal.
Activation of the semiconductor switches with their excitation windings using pulse width modulated control signals is achieved in simple fashion by the fact that the control signals of the commutation device and the output signals of the PWM generator activate the semiconductor switches with the excitation windings by way of driver circuits equipped with AND circuits.
Temperature protection that may be extended to the electrical and electronic components is achieved by the fact that the electrical or electronic components necessary for operation of the motor are arranged on a circuit board that is also housed in the housing chamber.


REFERENCES:
patent: 4961037 (1990-10-01), Orii et al.
patent: 5023531 (1991-06-01), Altemose et al.
patent: 5784232 (1998-07-01), Farr
patent: 5808441 (1998-09-01), Nehring
patent: 5828200 (1998-10-01), Ligman et al.
patent: 5942866 (1999-08-01), Hsieh
patent: 5952803 (1999-09-01), Canada et al.
patent: 6014004 (2000-01-01), Hamaoka et al.
patent: 6040668 (2000-03-01), Huynh et al.
patent: 6249100 (2001-06-01), Lange
patent: 6528987 (2003-03-01), Blake et al.
patent: 21 17 639 (1972-10-01), None
patent: 196 30 036 (1998-01-01), None
patent: 2 260 785 (1993-04-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronically commutable motor, in particular, for a liquid... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronically commutable motor, in particular, for a liquid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronically commutable motor, in particular, for a liquid... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3214639

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.