Electronically actuated display array for displaying...

Computer graphics processing and selective visual display system – Plural physical display element control system – Segmented display elements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S034000, C345S038000, C434S201000

Reexamination Certificate

active

06724355

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable.
FEDERALLY SPONSORED RESEARCH PROGRAM
Not Applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an electronically-actuated display array, specifically, to such an array that uses different combinations of differently-shaped segments to display arithmetic operation symbols.
2. Prior Art
Numerous liquid-crystal displays and other electronically-actuated displays display a multiplication symbol (×) and at least one other symbol signifying one of the arithmetic operations of addition (+), subtraction (−), and division (÷ or occasionally /). Many of these displays attempt to reduce cost and/or increase visual clarity by using an array of differently-shaped segments to display these symbols. The following patents and products are illustrative of this prior art.
RadioShack Corporation has marketed under the trademark “Talking Math Calculator” a handheld device for teaching arithmetic skills. This device electronically displays two-operand arithmetic problems involving a selected one of the four basic arithmetic operations (e.g., 6 [divided by] 3). The device displays the symbols for these operations (+, −, ×, ÷), one symbol at a time, in separate, non-overlapping locations in its liquid crystal display (LCD). As a result, although these symbols are legible, they are not located in the same location or where the operator would normally expect to see them, and they are disproportionately smaller than the displayed numbers to which they relate. Consequently, they are not readily noticed or easily viewed. For instance, although the two operands of an addition problem are displayed in a horizontal format (i.e., with the second operand to the right of the first operand), the addition symbol (+) is not located between the two operands where the user would expect to see it, but rather substantially above the operands. Nor is the symbol displayed with dimensions that even approach being proportional to those of the displayed digits of the operands. As a result, the fact that an addition problem is being displayed is not readily apparent. The inadequacies of the LCD result in large part from its inability to display all four arithmetic symbols in the same appropriate location (i.e., between the two operands) and, therefore, from its need to use four separate locations, which in turn results in compromises in the sizing and location of the symbols.
Texas Instruments, Incorporated, has marketed, under the trademark “Math . . . To Go!”, a handheld device that teaches basic arithmetic. This device can display two-operand arithmetic problems, including a representation of any one of the above-listed four basic arithmetic operator symbols. But its representation of a multiplication symbol consists solely of four diagonally-oriented lines pointing toward a vacant center and, therefore, does not closely simulate a normal multiplication symbol. This is especially undesirable in view of the fact that multiplication probably is practiced more than any of the other three basic arithmetic operations. Moreover, the device's addition symbol can be confused with its division symbol.
ExploraToy, under the trademark “math whiz”, has also marketed a handheld device that teaches basic arithmetic. It too displays arithmetic problems, including a representation of any one of the four basic arithmetic operator symbols. And its representation of a multiplication symbol also consists solely of four diagonally-oriented lines pointing toward a vacant center and, therefore, does not closely simulate a normal multiplication symbol.
U.S. Pat. No. 4,040,048, issued Aug. 2, 1977 to Lien, discloses a light-emitting-diode display array that displays, one at a time, symbolic representations of the four basic arithmetic operations, using appropriate combinations of seven segments (horizontal, V-shaped, and vertical). The multiplication symbol, however, has a vacant center which detracts substantially from its clarity and esthetic appearance. Moreover, the vertical arms of the addition symbol have confusing gaps, two of which are caused by the fact that V-shaped segments are used for the multiplication symbol.
U.S. Pat. No. 4,340,374, issued Jul. 20, 1982 to Culley, illustrates in
FIG. 2
in connection with disclosed electronic learning aids another similar array of component segments for displaying, one symbol at a time, representations of the addition symbol, the subtraction symbol, the multiplication symbol, and the division symbol. To represent the multiplication symbol, this array uses four straight diagonally-oriented segments instead of two V-shaped segments. Again, the effectiveness of the multiplication symbol suffers substantially from a vacant center.
U.S. Pat. No. 5,135,398, issued Aug. 4, 1992 to Thornton et al., and U.S. Pat. No. 5,137,457 issued Aug. 11, 1992 to Howard et al., illustrate in connection with disclosed electronic teaching devices an 11-segment array for displaying the four arithmetic operation symbols. The array uses a central square segment; two horizontal rectangular segments, one directly left and the other directly right of the central segment; four almost-square segments, two directly above and two directly below the central segment; and four diagonally-oriented segments arranged symmetrically around the central segment. Despite the importance of the multiplication symbol, the resulting representation of that symbol appears to have four triangular cavities around its center when compared to a normal multiplication symbol and, therefore, is significantly less effective than it would otherwise be.
Thus, all these prior-art devices either (1) display a multiplication symbol whose central portion is seriously flawed by a design that attempts to accommodate other arithmetic operation symbols in the same location; or (2) display (a) some of the four basic arithmetic operator symbols in locations where the operator does not expect to see them and (b) all the symbols in smaller than optimal proportions. In the first instance, especially in the case of young users, the often very important multiplication symbol is confusing, not quickly recognizable and/or eventually fatiguing to the user. In the second instance, the disproportionately-small and inappropriately-located symbols tend to be less noticeable and to make the device more time-consuming. In both instances, the device in question is less convenient and pleasing to use and, therefore, less likely to be used. Moreover, in attempting to commit to memory a basic arithmetic equation (math fact), such as 7×8=56, a student will sometimes find it helpful to form a mental visual image of the math fact. However, if a device presents the problem (7×8) and the math fact (7×8=56) with a visually distorted or disproportionately-small and inappropriately-located arithmetic operator (here, the multiplication symbol), the device does not effectively reinforce the student's mental image of the math fact.
BRIEF SUMMARY OF THE INVENTION
In view of the above, several objects of the invention are as follows: To provide an improved arithmetic display array; To provide an electronically actuated visual display array that can economically display, one at time, the symbols of all four of the basic arithmetic operations and that substantially eliminates all of the above-described disadvantages associated with prior-art devices; To provide alternative types of an electronically actuated visual display array that, even within the physically-limited confines of an inexpensive portable device, can clearly and relatively fully display, one symbol at a time and in the same appropriate location, essentially true representations of (a) a multiplication symbol approximating “×” and (b) one or more other of the following: an addition symbol approximating “+”, a subtraction symbol approximating “−”, and a division symbol approximating “÷. ”
A further object is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronically actuated display array for displaying... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronically actuated display array for displaying..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronically actuated display array for displaying... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3263363

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.