Electronic weighing apparatus utilizing surface acoustic waves

Weighing scales – Self-positioning – Electrical current generating or modifying

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C177S2100FP, C073S580000, C073S862590, C073SDIG004, C331S065000, C331S047000

Reexamination Certificate

active

06448513

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to electronic weighing devices. More particularly, the invention relates to an electronic weighing device which employs surface acoustic waves to measure weight.
2. State of the Art
Precision electronic weighing devices are widely known in the art and there are many different technologies utilized in these electronic weighing devices. Laboratory scales or “balances” typically have a capacity of about 1,200 grams and a resolution of about 0.1 gram, although scales with the same resolution and a range of 30,000 grams are available. The accuracy of these scales is achieved through the use of a technology known as magnetic force restoration. Generally, magnetic force restoration involves the use of an electromagnet to oppose the weight on the scale platform. The greater the weight on the platform, the greater the electrical current needed to maintain the weight. While these scales are very accurate (up to one part in 120,000), they are expensive and very sensitive to ambient temperature. In addition, their range is relatively limited.
Most all other electronic weighing devices use load cell technology. In load cell scales, the applied weight bends an elastic member which has strain gauges bonded to its surface. The strain gauge is a fine wire which undergoes a change in electrical resistance when it is either stretched or compressed. A measurement of this change in resistance yields a measure of the applied weight. Load cell scales are used in non-critical weighing operations and usually have a resolution of about one part in 3,000. The maximum resolution available in a load cell scale is about one part in 10,000 which is insufficient for many critical weighing operations. However, load cell scales can have a capacity of several thousand pounds.
While there have been many improvements in electronic weighing apparatus, there remains a current need for electronic weighing apparatus which have enhanced accuracy, expanded range, and low cost.
The previously incorporated applications disclose an electronic weighing apparatus having a base which supports a cantilevered elastic member upon which a load platform is mounted. The free end of the elastic member is provided with a first piezoelectric transducer and a second piezoelectric transducer is supported by the base. Each transducer includes a substantially rectangular piezoelectric substrate and a pair of electrodes imprinted on the substrate at one end thereof, with one pair of electrodes acting as a transmitter and the other pair of electrodes acting as a receiver. The transducers are arranged with their substrates substantially parallel to each other with a small gap between them and with their respective electrodes in relatively opposite positions. The receiver electrodes of the second transducer are coupled to the input of an amplifier and the output of the amplifier is coupled to the transmitter electrodes of the first transducer. The transducers form a “delay line” and the resulting circuit of the delay line and the amplifier is a positive feedback loop, i.e. a natural oscillator. More particularly, the output of the amplifier causes the first transducer to emit a surface acoustic wave (“SAW”) which propagates along the surface of the first transducer substrate away from its electrodes. The propagating waves in the first transducer induce an oscillating electric field in the substrate which in turn induces similar SAW waves on the surface of the second transducer substrate which propagate in the same direction along the surface of the second transducer substrate toward the electrodes of the second transducer. The induced waves in the second transducer cause it to produce an alternating voltage which is supplied by the electrodes of the second transducer to the amplifier input. The circuit acts as a natural oscillator, with the output of the amplifier having a particular frequency which depends on the physical characteristics of the transducers and their distance from each other, as well as the distance between the respective electrodes of the transducers.
When a load is applied to the load platform, the free end of the cantilevered elastic member moves and causes the first transducer to move relative to the second transducer. The movement of the first transducer relative to the second transducer causes a change in the frequency at the output of the amplifier. The movement of the elastic member is proportional to the weight of the applied load and the frequency and/or change in frequency at the output of the amplifier can be calibrated to the displacement of the elastic member. The frequency response of the delay line is represented by a series of lobes. Each mode of oscillation is defined as a frequency where the sum of the phases in the oscillator is an integer multiple of 2&pgr;. Thus, as the frequency of the oscillator changes, the modes of oscillation move through the frequency response curve and are separated from each other by a phase shift of 2&pgr;. The mode at which the oscillator will most naturally oscillate is the one having the least loss. The transducers are arranged such that their displacement over the weight range of the weighing apparatus causes the oscillator to oscillate in more than one mode. Therefore, the change in frequency of the oscillator as plotted against displacement of the transducers is a periodic function. There are several different ways of determining the cycle of the periodic function so that the exact displacement of the elastic member may be determined.
It is generally known in the art of SAW technology that the frequency range in which the losses are the lowest is not necessarily the frequency range in which the oscillator exhibits the best phase linearity. From the teachings of the previously incorporated applications, those skilled in the art will appreciate that in a SAW displacement transducer such as disclosed in the previously incorporated applications, better phase linearity provides a more linear relationship between frequency and displacement. In the case of a weighing apparatus using a SAW displacement transducer as described in the previously incorporated applications, better phase linearity will result in a more linear relationship between weight and frequency.
It is known in the art of SAW oscillators that changing the topology of the oscillator transmitter and receiver can cause a broader bandwidth of the delay line and that a broader bandwidth results in better phase-linearity. It is also known that using a smaller frequency range provides better linearity and that a smaller frequency range can be obtained with a longer delay line. Although these known methods can increase phase linearity in a SAW oscillator, the frequency range in which the best linearity is achieved for a particular oscillator is still not necessarily the range with the lowest losses.
From the foregoing, those skilled in the art will appreciate that in order to enhance the accuracy of a SAW displacement transducer such as that used in a weighing device, it would be desirable to cause the SAW oscillator to oscillate in the range having the best phase linearity.
As disclosed in the previously incorporated applications, weighing accuracy is affected by temperature. The previously incorporated applications disclose a SAW temperature oscillator having a transmitter and receiver on the same substrate. The temperature sensitivity of the load cell disclosed in the previously incorporated applications is approximately 500 ppm of the weight reading per 1° C. temperature change. Accuracy of 100 ppm of the weight reading can be achieved if temperature is measured to within 0.2° C. which represents a shift of about 1 kHz of the SAW temperature sensor. This shift is easy to measure in the short term. The resolution of the SAW temperature sensor is on the order of 0.001° C. However, the long term stability of the SAW temperature sensor can drift more than 1 kHz due to many factors including humidity.
It will also be appreciated that temperature

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronic weighing apparatus utilizing surface acoustic waves does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronic weighing apparatus utilizing surface acoustic waves, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic weighing apparatus utilizing surface acoustic waves will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2877502

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.