Electronic voting system

Registers – Voting machines

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S057000, C235S386000

Reexamination Certificate

active

06641033

ABSTRACT:

The present invention relates to an integrated voting system which is electronic at all stages in the system and, more particularly, to a voting system with a reusable, non-volatile memory module transportable between different levels of the election system to pass data therebetween, and relates further to improved features for determining and verifying that the appropriate ballot form is being used at a particular voting station. The present invention also relates to verifying that the voter's ballot selection displayed to the voter is identical to the ballot image recorded electronically, to improved storage for between election equipment management and testing, and to an improved absentee voting system.
BACKGROUND OF THE INVENTION
Voting systems in place around the world typically involve either paper ballots or mechanical counters. The paper ballots used in some areas may be as simple as a form onto which the selected candidate's name is written or on which an X is placed to indicate the candidate selected by the voter. Alternatively, the paper ballot may have holes punched therein adjacent to the desired candidate or ballot issue. With such ballots, the only time the voter is required to write on the ballot is if a write-in candidate is selected. There are many disadvantages to such paper ballot systems. One is the fact that paper ballots can become physically damaged, or altered, between the time the voter makes the selection and the time a ballot-counting machine eventually reads the voter's selection on the ballot. Another disadvantage is that voters can inadvertently punch the hole or place the X next to a different candidate than was intended by the voter. When this goes unnoticed by the voter, the voter ends up casting a vote which was not intended. In addition, write-in votes must be manually read by an election official, which is time consuming and may be very difficult, depending upon the legibility of the voter's handwriting. In many cases, the name written in cannot be read and the vote does not count. Also, paper ballots must be custom printed for each election, with at least one ballot printed for each potential voter. Since these ballots are specific to a particular election, the costs are significant for each election.
Many other election systems include a system of mechanical switches and levers which are actuated by the voter to increment one of a plurality of mechanical counters. At the end of the election, the counters for each of the candidates at each of the voting booths is tallied and the results are reported to the jurisdictional headquarters. While this system solves some of the problems of the paper ballots, the machines required at each of the voting booths are fairly expensive and have many mechanical parts which require routine maintenance and repair. In addition, these machines are heavy and cumbersome to move and set up. Another disadvantage is the manual tallying of the counters required at the precinct level and the manual reporting of the results to the jurisdictional headquarters.
There are a variety of other non-electronic methods for conducting an election. Unfortunately, each suffer from many of the problems discussed above: illegible ballots which must be discarded, votes inadvertently cast for unintended candidates, excessive costs for election consumables, and the ease with which the election results may be altered by tampering.
While some electronic voting systems have been developed to solve some of these problems, none of these proposed electronic voting systems has been successful enough to result in widespread use. In the areas where non-mechanical means for conducting elections are used, the electronic components typically make up only a portion of the overall system so that it is not an integrated system. Thus, some of the steps in the election process are still performed manually.
Some of the proposed electronic systems include a form of transportable memory, which is used to transport data between the jurisdictional headquarters and the precinct. It is believed that all of the transportable memory methods proposed to date require either internal batteries to maintain the data contained therein, or else the memories are physically altered to maintain the stored data. One drawback of the internal battery technique is the risk of power interruption when the batteries lose their charge. In addition, the batteries must be recharged or replaced on a regular basis, adding to the cost of the system. An example of a physically altered memory is an optical disk which can be written to only once for each memory location. Thus, the optical disk must be replaced for subsequent elections, or else the optical disk must have sufficient capacity to store data for multiple elections, at the end of which the optical disk must be replaced. Of course, the cost of these disks is another election consumable cost.
In addition, the transportable memory devices disclosed in the prior art are intended to be transported to a specific precinct as they each contain data relevant only to that specific precinct. Such a system will not operate properly if the wrong transportable memory device is transported to a particular precinct. This would mean, at a minimum, at least two precincts would have their voting terminals incorrectly configured and would, at a minimum, delay opening of the polls at those precincts which were affected. Worse yet, the error might not be discovered and the entire election conducted with the incorrect configuration for some number of precincts. One known system requires two memory modules to complete the voting process at the precinct, further raising the potential for error.
A variety of methods for securing the data in these proposed electronic systems has been disclosed. Most take the form of either redundantly storing the data or disabling the device so that no further data can be written to that device. While redundantly storing data may at first blush appear to add some level of security, it does not protect against writing the wrong data redundantly. In order to be sure that the wrong data is not written, it must be verified as correct prior to writing it redundantly.
Other electronic-based systems include video display screens similar to computer monitors which present the required information to the voter. Such systems require the voter to scroll through the available options to make their selection. This may be confusing to some voters who may become lost and frustrated in the hierarchy of screen formats, so as not to complete their ballot or to erroneously do so. Further, many voters are intimidated by operating computer-based technology and may choose not to vote.
Another electronic-based system includes voting tablets with printed ballot overlays laid on top of the voting tablet. The voter can actuate selected switches from a matrix of switches to make their selections. Unfortunately, as with many of the other systems, the feedback provided to the voter that the desired candidate was selected is disconnected from the data electronically stored regarding the cast ballot in the electronic system. In other words, it is possible that a voter would receive an indication or feedback that one candidate had been selected when actually the system recorded a vote for a competing candidate.
Another problem with most electronic-based systems is the inability to deal with differing ballot styles even within a precinct, wherein certain voters may be eligible to vote on certain races and other voters eligible to vote on other races. Most electronic-based systems must be manually controlled to provide the proper ballot styles to each voter or the proper combinations selected from among many to provide the correct eligibility for the voter. This places undue burden on the operator and presents significant opportunity for error.
Other proposed electronic-based systems include a machine readable card given to each voter. The voter must be given the appropriate card for that voter, and then properly place the card

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronic voting system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronic voting system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic voting system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3166683

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.