Machine element or mechanism – Control lever and linkage systems – Foot operated
Reexamination Certificate
2002-01-07
2004-07-06
Luong, Vinh T. (Department: 3682)
Machine element or mechanism
Control lever and linkage systems
Foot operated
C074S513000, C074S560000
Reexamination Certificate
active
06758114
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
No Applicable
REFERENCE TO MICROFICHE APPENDIX
Not Applicable
FIELD OF THE INVENTION
The present invention generally relates to a control pedal assembly for a motor vehicle and, more particularly, to a control pedal assembly for a motor vehicle which is electronically coupled and has a mechanical hysteresis device to simulate the feel of a control pedal assembly which is mechanically coupled.
BACKGROUND OF THE INVENTION
Control pedals are typically provided in a motor vehicle, such as an automobile, which are foot operated by the driver. Separate control pedals are provided for operating brakes and an engine throttle. When the motor vehicle has a manual transmission, a third control pedal is provided for operating a transmission clutch. The control pedals are typically connected to control devices by cables or other mechanical transmission devices which convert the limited rotary motion of the pedals into useful mechanical motion at the control devices to control operation of the motor vehicle. The engine throttle is typically connected to an accelerator pedal through a mechanical cable such as a Bowden cable. This mechanical linkage has a desirable and functional “feel” wherein the pressure required for advancing the control pedal to accelerate the motor vehicle is greater than the pressure required for maintaining the pedal in a fixed position to maintain the motor vehicle at a constant speed. This difference of required pressures is often referred to as a “hysteresis effect”. The pressure required to advance the control pedal is typically relatively high. This is desirable to obtain adequate return pressure to return the pedal to the idle position in a desired amount of time when foot pressure is removed from the control pedal. The pressure required to advance the control pedal is easily provided when accelerating but would become uncomfortable over time to maintain a relatively constant speed. Therefore, the hysteresis effect is important in providing a reasonable force for maintaining the accelerator pedal in position to comfortably drive at a generally constant speed while providing an adequate return force for returning the control pedal to idle to decelerate the motor vehicle.
There have been attempts to introduce an electrical linkage between the control pedal and the control device. Typically, a position sensor converts the position of the control pedal into an electrical signal which is sent to the control device. This electrical linkage has far fewer routing limitations than the mechanical linkages. The control pedal, however, must be provided with a hysteresis device to obtain the “feel” of a control pedal having a mechanical linkage. Various proposals have been made to provide a control pedal with both an electrical linkage and a mechanical hysteresis device. While these proposed control pedals may adequately provide the “feel” of a control pedal with a mechanical linkage, they are relatively complex and expensive to produce. Additionally, the proposed control pedals require a relatively large amount of space. Accordingly, there is a need in the art for a control pedal assembly which is electronically coupled and has a mechanical hysteresis device, is relatively simple and inexpensive to produce, and is highly reliable in operation.
SUMMARY OF THE INVENTION
The present invention provides a control pedal assembly which overcomes at least some of the above-noted problems of the related art. According to the present invention, a control pedal assembly includes, in combination, a support structure, a pedal arm pivotally mounted to the support structure and carrying a pedal, and an electronic throttle control including a sensor operatively connected to the support structure and the pedal arm. The sensor provides electronic signals responsive to movement of the pedal arm relative to the support structure. A hysteresis device is adapted to generate a desired feel in response to pivotal movement of the pedal arm. The hysteresis device includes a plunger movable within a chamber between an extended position and a depressed position upon rotation of the pedal arm and at least one spring member resiliently biasing the plunger to the extended position. The plunger has a plurality of deflectable prongs to resist pivotal movement of the pedal arm. An insert is located between the plunger and the at least one spring member to equalize forces from the at least one spring member on the plurality of resiliently deflectable prongs.
According to another aspect of the present invention, a control pedal assembly includes, in combination a support structure, a pedal arm pivotally mounted to the support structure and carrying a pedal, and an electronic throttle control including a sensor operatively connected to the support structure and the pedal arm. The sensor provides electronic signals responsive to movement of the pedal arm relative to the support structure. A hysteresis device is adapted to generate a desired feel in response to pivotal movement of the pedal arm. The hysteresis device includes a plunger movable within a chamber between an extended position and a depressed position upon rotation of the pedal arm and at least one spring member resiliently biasing the plunger to the extended position. The hysteresis device is secured to the support structure and the plunger engages an arcuate engagement surface carried by the pedal arm.
According to yet another aspect of the present invention, a control pedal assembly includes, in combination a support structure, a pedal arm pivotally mounted to the support structure and carrying a pedal, and an electronic throttle control including a sensor operatively connected to the support structure and the pedal arm. The sensor provides electronic signals responsive to movement of the pedal arm relative to the support structure. A hysteresis device is adapted to generate a desired feel in response to pivotal movement of the pedal arm. The hysteresis device comprises a plunger movable within a chamber between an extended position and a depressed position upon rotation of the pedal arm and at least one spring member resiliently biasing the plunger to the extended position. At least one return spring member acts between the pedal arm and the support structure at the plunger.
According to even yet another aspect of the present invention, a control pedal assembly includes, in combination, a support structure, a pedal arm pivotally mounted to the support structure and carrying a pedal, and an electronic throttle control including a sensor operatively connected to the support structure and the pedal arm. The sensor provides electronic signals responsive to movement of the pedal arm relative to the support structure. A hysteresis device is adapted to generate a desired feel in response to pivotal movement of the pedal arm. The hysteresis device includes a plunger movable within a chamber between an extended position and a depressed position upon rotation of the pedal arm and at least one spring member resiliently biasing the plunger to the extended position. The chamber forms a first friction service and the plunger has a plurality of prongs which form a second friction surface engagable with the first friction surface to resist pivotable movement of the pedal arm.
From the foregoing disclosure and the following more detailed description of various preferred embodiments it will be apparent to those skilled in the art that the present invention provides a significant advance in the technology and art of control pedal assemblies. Particularly significant in this regard is the potential the invention affords for providing a high quality, feature-rich, low cost assembly. Additional features and advantages of various preferred embodiments will be better understood in view of the detailed description provided below.
REFERENCES:
patent: 3769852 (1973-11-01), Peifer et al.
patent: 3872739 (1975-03-01), Hudson et al.
patent: 4949590 (1990-08-01), Barker et al.
patent: 5563355 (1996-10-01), Pluta et al.
patent
Sundaresan Srini
Wortmann Martin
Dura Global Technologies Inc.
Kiczek Casimir R.
Luong Vinh T.
Mescher Richard M.
LandOfFree
Electronic throttle control accelerator pedal mechanism with... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electronic throttle control accelerator pedal mechanism with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic throttle control accelerator pedal mechanism with... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3197090