Data processing: measuring – calibrating – or testing – Testing system – Including program set up
Reexamination Certificate
2002-03-20
2004-10-19
Barlow, John (Department: 2863)
Data processing: measuring, calibrating, or testing
Testing system
Including program set up
C714S046000
Reexamination Certificate
active
06807506
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an electronic system for performing automated testing of complex electronic, electro-mechanical, and mechanical devices, and more particularly to a computerized test system that is capable of controlling a variety of automated tests.
2. Statement of the Problem
Complex electronic, electro-mechanical and mechanical devices are generally tested using automated test systems. The tests may include validation tests which run through the various operations of a device under test (DUT) and records whether each operation was performed properly. The tests may also include environmental tests which expose the DUT to various combinations of temperature, pressure, and humidity to record the results of operations as the environment changes. Other tests, such as production tests, may also be completed. Generally, both the DUT and the systems providing the environmental and other constraints on the DUT are controlled electronically. In the last decade or so, computerized programs which are capable of controlling a variety of automated tests, referred to in the art as “test executive” programs, have been developed.
Tests usually are defined by a set of rules or specifications to which the DUT is compared. The rules or specifications generally comprise various inputs defined by electrical and mechanical parameters applied to the DUT, such as voltage, current, specified manipulations of controls and device parts, as well as environmental parameters under which the test is conducted, such as temperature, humidity, pressure, and the time period over which a parameter is applied. Each test will include many combinations of the parameters applied to each element of the DUT, and often will be repeated many times. Each combination of parameters will define a measurement that results in one or more datapoints, which are recorded and compared to numerical or Boolean limits defining the specifications. Thus, as devices become more complex, electronic test programs have become very long and complex, often requiring several days, or even a week or more to run a complete test.
Test executive programs in the prior art include internal test executive programs developed by Agilent Technologies and TESTSTAND software developed by National Instruments Corporation, which is described as a ready-to-run test executive for organizing, controlling, and executing automated prototype, validation, or production test systems. During execution, the prior art test executive program halts during testing to allow connections to be rearranged, settings to be changed, parameter modifications, etc. After all of the changes are made, the test executive program resumes operation. However, a user may not know which of several stop points had been reached by the test program, or how to configure the test equipment and device to allow the test executive program to continue. This can cause long and unacceptable delays in the testing process. It can also result in errors that require tests to be repeated. Therefore, there is a need in the art for a more effective way to enable a user to make desired modifications.
3. Summary of the Invention
The above and other problems are solved and an advance in the art is made by an electronic test executive system with interactive electronic displays in accordance with this invention. The test executive system according to the invention displays testing information upon the occurrence of predetermined test events. The test information comprises directions for a user of the test executive system to perform an action required to continue a test. A first advantage of this invention is that testing information can be displayed in an easy-to-grasp manner. A second advantage of this invention is that the displayed testing information preferably allows a user to easily determine at which point the test has halted. A third advantage is that instructions about how to configure testing equipment, a device under test, or parameters are preferably displayed to the user to allow easier set up for further testing. A fourth advantage is that it is easy for the test developer to create the content of the displays.
The present invention is preferably an application executed by a processing unit. One skilled in the art will recognize that instructions for such an application may be stored in a memory as software instructions, and/or as firmware in a memory affixed to a processing chip. The application of this invention is executed in the following manner. The application receives a signal that an event in a testing procedure occurs. For purposes of the present discussion, an event is a point were modifications must be made to a DUT or environmental equipment to enable the test to continue or some other stopping point in a test procedure, a point in a testing procedure when data must be shown, an end point in a test measurement, a test procedure, or a test, or any other event in a test which requires a display of information to a user. Testing information pertaining to the event is retrieved. For purposes of this discussion, testing information includes, but is not limited to, instructions about how to reconfigure the DUT and/or environmental equipment, parameters used to process a test, measurements of results, or any other information which must be displayed at a certain point in the testing procedure. The application then displays the testing information. In a preferred embodiment, the testing information is displayed in a dialog box.
Alternatively, the testing information may be stored remotely from the processing unit. For example, the testing unit may be stored in a Hyper Text Markup Language (HTML) format on a remote computer system. In this case, the processing system opens a conventional web browser application which can retrieve and display the testing information.
The testing information preferably includes an input command or commands. This portion of the testing information may be displayed with the other testing information or separately. For example, input commands may be shown as buttons in the dialog box and the user may “click” the desired one of the input commands using a mouse or other pointing device. The application then receives a signal from the user indicating the desired input. The desired input is then processed to perform the selected command. After the desired input is processed, the application may close the display.
To display the test information, the application preferably determines a format in which the testing information is stored. Then the application executes an application that displays the testing information in the proper format. For example, the testing information maybe in an HTML format. The test information may be in an HTML format because the testing information contains pictures and instructions about how to configure the equipment and/or device. In this case, the application preferably opens a web browser application to retrieve and display the testing information. In another example, the test information may be text in an ASCII format. The application, in this case, preferably opens a dialog box and displays the ASCII text.
Some of the input commands that may be displayed to a user include a continue running test command, an abort command, a skip measurement command, a skip test command, an O.K. command, and a print command. The user may then select one of the inputs displayed. In a preferred embodiment, the input is selected by the user “clicking” on a button representing the command. For example, the user “clicks” on an O.K. button to indicate that the user has completed an instruction or reviewed the information.
When a user inputs a continue running test command, the application preferably ends and allows the executive test program to resume tests being performed on a device. When a user inputs an abort command, the application preferably signals the executive test program to halt the test procedure being performed. When a skip measurement command is received from the user, the app
Mills Richard
Sutton Christopher K
Agilent Technologie,s Inc.
Barlow John
Dougherty Anthony T.
LandOfFree
Electronic test program with test triggered interactive... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electronic test program with test triggered interactive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic test program with test triggered interactive... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3324351