Electronic strobe

Electricity: battery or capacitor charging or discharging – Capacitor charging or discharging

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06291974

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a constant-voltage automatic charging strobe circuit used as the strobe unit circuit for easy-use cameras such as disposable cameras, compact cameras, or digital still cameras.
2. Description of the Related Art
In general, most of the compact cameras on the market are equipped with an automatic exposure function and use a battery with nominal voltage of 3 volts or greater.
In the circuit block of the camera, the automatic exposure circuit is generally constituted so as to be within the shutter block and to operate at timing that is shifted from the timing of the strobe circuit block in a series of camera operations. The power source may be either a 3-volt power source without further enhancement, or converted once to 4 volts or 5 volts by a DC/DC converter.
Also, for a nominal battery voltage of 1.5 volts it is necessary to provide a solenoid of corresponding size in order to operate the aperture blades of the camera exposure mechanism, for example. Because of the high current flowing to the solenoid, the number of parts becomes large and the time until battery replacement also becomes shortened in practical application.
Next, when considering a constant-voltage strobe circuit, the basic operating manners are all the same, namely, detect the charging voltage of a main capacitor, turn off a power switching transistor (oscillation control transistor) connected to the primary side of a transformer when an established voltage is reached, and effect oscillation and stop charging. To realize the means for detecting the abovementioned charging voltage, there are the method of using a voltage detecting element such as a Zener diode, a varistor or neon lamp, and the method of preparing an intermediate tap on the secondary winding side of the transformer, using the output voltage generated thereby and turning off the oscillation control transistor. Furthermore, combinations of these methods may be used. However, circuits to which these methods are applied all have complex structures and become expensive.
Also, the method for automatically controlling the quantity of light emitted by the strobe uses a parallel control circuit or serial control circuit for controlling the quantity of light using a thyristor or quench tube. Furthermore, in recent years, the method for controlling the photocurrent flowing directly to a xenon tube by using IGBT as a new power device is becoming mainstream.
Using these circuits makes it possible to attain a continuously stable quantity of light corresponding to changes in distance. However, these have a large number of circuit elements and the main device is expensive. As a result, the low price that is one of the merits of easy-use cameras does not materialize. In view of this situation, many types of the easy-use cameras that are currently available use manually controlled circuits having no light-quantity correction circuits.
In this way, in conventional compact cameras, it is necessary to select batteries with high nominal voltages or to use complex and large-scale circuitry to attain the high driving current in order to drive the load (solenoid, etc.) for operating the aperture blades and so forth in the automatic exposure mechanism. The problem is that with this type of load, cost increases are unavoidable and battery life has to become short.
Also, in conventional compact cameras, an automatic oscillation stopping circuit, for turning off the oscillation control transistor upon detecting a set voltage and causing the oscillation action to stop, is generally realized by using a voltage detecting element such as a Zener diode, or by using a more complex circuit with an intermediate tap connected to the secondary winding side of a transformer, using the output voltage generated thereby, and turning off the oscillation control transistor. As a result, the problem is that cost increases for the camera as a whole are brought about by the cost increases from this circuitry.
Also, conventional cameras include those having a circuit for automatically controlling the quantity of light emitted by the strobe that controls the quantity of light emitted by the strobe circuit using a thyristor or quench tube. Because these circuits include many circuit elements and the price of the main device is also high, it is not practical to include this in an inexpensive camera and these types of inexpensive cameras therefore do not have a function for preventing overexposure when taking strobe pictures at close range.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a constant-voltage automatic charging strobe circuit that does not use a battery of a high nominal voltage or a complex and large-scale circuit in order to attain high driving current for driving the aperture blades of an automatic exposure function or driving the load to effect mechanical operations, thereby to retain the low costs of the cameras having these types of loads and enable long battery life.
It is another object of the present invention to provide a constant-voltage automatic charging strobe circuit that does not use a Zener diode for an automatic oscillation stopping circuit that turns off the oscillation control transistor and causes oscillation to stop upon the detection of a set voltage, and that can have a circuit configuration that is as simple as possible and keeps down the costs of that circuit part.
It is still another object of the present invention to provide a constant-voltage automatic charging strobe circuit capable of providing a function for correcting the quantity of light when taking strobe pictures at close range, without increasing the cost of the inexpensive cameras.
In order to achieve the abovementioned objects, a first aspect of the invention is a constant-voltage automatic charging strobe circuit in which battery voltage is stepped up by a step-up transformer and charges a main capacitor connected to a secondary side of the step-up transformer, while a flashing element connected in parallel with the main capacitor is caused to flash by the discharge current from the main capacitor, comprising a load for effecting mechanical operations; and a secondary power circuit for rectifying to direct current an AC voltage generated in collector of an oscillation control transistor connected to a primary side of the step-up transformer and generating a DC secondary source that has been stepped up higher than the battery voltage, wherein the load is driven by the DC secondary source.
With this first aspect of the invention, because the direct current secondary power source for the load which effects mechanical operations is generated within the strobe circuit, the load on the battery power source is lessened by this secondary power source, and batteries with a low nominal voltage can be used. Also, because of the reductions in the direct power consumption for driving the load supplied from the battery power source, it becomes possible to extend battery life.
Furthermore, the circuit can be constituted of a very small number of elements such as rectifying elements, smoothing elements, and amplifying elements and it becomes possible to keep down the cost increases while providing a load for effecting mechanical operations.
A second aspect of the present invention comprises that in the first aspect of the present invention, the constant-voltage automatic charging strobe circuit, further comprises a light-quantity correction circuit that has another capacitor connected serially between the main capacitor and the flashing element; and a light-quantity correction switch that can be switched between a make state in which the another capacitor is short circuited and a break state in which the short circuit of the another capacitor is eliminated; wherein, when the flashing element is caused to flash with the light-quantity correction switch in the break state, the another capacitor is temporarily charged by the discharge current from the main capacitor, thereby reducing the difference

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronic strobe does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronic strobe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic strobe will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2465827

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.