Locks – Operating mechanism – Using a powered device
Reexamination Certificate
1999-12-28
2001-01-30
Barrett, Suzanne Dino (Department: 3627)
Locks
Operating mechanism
Using a powered device
C070S30300A, C070S278100, C070S278700
Reexamination Certificate
active
06178791
ABSTRACT:
FIELD OF INVENTION
This invention relates to electronic locks which utilize solenoids to control the lock opening operations and, more particularly, to solenoids which are fired electronically and which then remain in the activated position for a period of time, thereby permitting the operator to withdraw the bolt and open the lock.
BACKGROUND OF THE INVENTION
Solenoids used in electronic locks typically act to displace some member of the mechanical controls of the lock such that the remainder of the mechanical controls in the lock may function to withdraw the bolt and thereby open the lock. Some solenoids that have been used in previous electronic locks required either prolonged current flow through the solenoid to maintain the solenoid in its activated or actuated position, or a mechanical latching mechanism to hold the activated mechanism in its activated position until the lock is physically opened. A latch typically requires a reset input to return the lock to its locked secured condition.
Solenoids of the push type typically have an armature which, upon the actuation of the solenoid by an electrical voltage applied thereto, extends from the body of the solenoid. The solenoids attract or pull an armature toward the solenoid housing and body; and, if the armature is such that it is pulled into contact with the body of the solenoid and no restore force is applied to the solenoid armature, then the armature seals and remains sealed to the solenoid body even after the electrical potential and current are removed from the solenoid. This sealing of the armature plate to the solenoid body commonly found on most push-type solenoids is referred to as a magnetic seal.
Solenoids of the push-type typically are supplied from the manufacturer with a relatively thin, non-magnetic spacer or shim interposed between the armature plate and the solenoid body to prevent the armature plate from making contact with the solenoid body. This spacer keeps the armature plate sufficiently away from the body so that whenever the activating voltage is removed, any residual magnetic field in the housing and core of the solenoid will be displaced from the solenoid armature plate sufficiently that the residual magnetic field cannot hold the solenoid armature in a sealed position. On the other hand, without the spacer present, the armature plate seals against the solenoid body, and there may be insufficient mechanical restoration force available to reset the solenoid to its unactuated position. Accordingly, the armature will remain in its actuated or picked position and will maintain the set condition whereby the lock is conditioned for opening and, therefore, is unlocked and insecure.
In locks using the sealing characteristic of the solenoid without the spacer, mechanical resets are necessary to break or overcome both the residual magnetic attraction force and the sealing of the armature and armature plate to the solenoid body. In order to accomplish the resetting function, mechanical resets require some action such as a manual operator input or the withdrawal of the bolt. If the armature plate is sealed to the solenoid body and there is either insufficient or no mechanical force applied to the armature to cause it to reset to its unactuated position, then the residual magnetism found in a solenoid which does not have a non-magnetic spacer may hold the armature in the actuated position.
If the solenoid is first activated and then restores under a sufficiently strong mechanical reset force immediately upon the deactivation of the solenoid's voltage source, the lock components and particularly the solenoid armature will reset and any displaced mechanical elements which are not latched in place, similarly will reset. This results in a lock which is only subject to being opened while the voltage potential is applied to the solenoid and the armature is in its actuated position.
The maintaining of a continuous voltage potential and current flow on and through the solenoid is a substantial power constraint on the design of the self-powered locks wherein all the power necessary to operate all aspects of the lock is derived from a manually operated electrical generator. Locks which are self-powered and have a manually operated generator contained within the lock typically are incapable of maintaining any substantial voltage and current flow for any significant length of time and, therefore, it is impractical to maintain an actuating current for a time sufficient for the operator to withdraw the bolt and, for battery powered locks, the battery life is substantially reduced.
OBJECTS OF THE INVENTION
It is an object of the invention to electrically reset within a predetermined time period the actuating solenoid and the lock to a locked position.
It is another object of the invention to prevent the lock from remaining for an extended period of time in a condition for bolt withdrawal.
It is a further object of the invention to release the magnetically held control element by an electrical command issued to the solenoid.
SUMMARY OF THE INVENTION
Electronic locks typically have a microprocessor or other electronic logic controls to produce appropriate control signals for the operation and control of the lock. In locks with solenoid controls, one such signal is a signal to pulse or pick the solenoid to condition the remainder of the lock mechanism to be opened by the operator. It is a very desirable feature to use a solenoid which is capable of being magnetically sealed in order to hold for a period of time the mechanical apparatus in an opening condition following the dissipation or the removal of the voltage source from the solenoid. If the individual operating the lock is not extremely quick in the manipulation of the dial or other element of the lock to cause withdrawal of the bolt following the conditioning of the solenoid, then the mechanism of the lock will not permit the individual to operate the lock mechanism to open it. At the least, this defeats the purpose of the lock in that it cannot be reliably opened and it creates a condition which is unacceptable from a human factors standpoint.
Using a solenoid which is capable of sealing and being retained in its actuated position following the termination of the actuating electrical voltage, the lock is capable of being opened following the actuation of the solenoid, without maintaining an activating or holding voltage on the solenoid. Locks using electromagnetic devices, such as a solenoid, to condition a portion of the mechanism of the lock for opening upon actuation and consequently the solenoid remains sealed are very advantageous in this respect. However, such a lock will require a secondary mechanism to reset the solenoid and to return the lock to a locked condition.
Typically, locks which have this feature rely upon a mechanical input to the solenoid to displace the armature and armature plate sufficiently to remove the armature plate from proximity to the magnetic field to release it from its actuated condition. Because the lock is conditioned for opening upon the actuation of the solenoid, the period during which time the operator may manipulate the lock dial or other unlocking input member is indeterminate; and, therefore, the lock is left in a vulnerable condition for unlocking until such time as the lock bolt is withdrawn, the lock is unlocked, and the solenoid is reset. The lock described herein is provided with a release or reset circuit which causes the solenoid in response to an electrical signal to reset from its actuated position to its unactuated position.
The armature plate on the armature of the solenoid is magnetically held to the solenoid body in a sealed state by the magnetic field emanating from the core and solenoid housing. This magnetic field is a residual magnetic field which remains as a result of the incomplete restoration of the magnet core and the solenoid housing to an unmagnetized state upon the removal of the electrical potential from the solenoid coil.
In order to reset the solenoid, a circuit provided in the electronic cont
Hill James D.
Irving William Fain
Loiselle James Thomas
Luciano Joseph W.
Mimlitch Kenneth H.
Arent Fox Kintner & Plotkin & Kahn, PLLC
Barrett Suzanne Dino
Hill Rustan J.
Mas-Hamilton Group, Inc.
LandOfFree
Electronic reset for solenoid activated control in an... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electronic reset for solenoid activated control in an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic reset for solenoid activated control in an... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2526794