Electricity: measuring and testing – Measuring – testing – or sensing electricity – per se – With rotor
Reexamination Certificate
2000-08-18
2002-10-22
Le, N. (Department: 2858)
Electricity: measuring and testing
Measuring, testing, or sensing electricity, per se
With rotor
C209S573000
Reexamination Certificate
active
06469496
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The present invention relates in general to electronic test equipment, and in particular to an electronic memory module tester having an automatic feeder handler and alignment assembly.
BACKGROUND OF THE INVENTION
Prior art test equipment includes automatic testers for testing electronic memory modules. The electronic memory modules have typically comprised circuit boards that have random access memory (RAM) integrated circuits mounted thereto. The circuit boards have been provided with surface contact pads that are typically aligned along one edge of the circuit board. This type edge connector configuration has been utilized for connecting the RAM integrated circuit components mounted to the circuit board to data buses of the devices within which the memory modules are used. Such memory modules have included SIMM, DIMM, and SODMM types of memory. Additionally, memory cards may also be utilized having the appearance of a credit card, and also having surface connectors mounted thereto for connecting the internally disposed memory thereof to equipment in which the aforementioned memory module is used.
Prior art in the technical field of the invention has encountered several important problems that negatively affect the accuracy and reliability of the test equipment. The invention described herein addresses these problems.
Test Accuracy. Electronic memory modules are typically tested after manufacturing to assure that they will perform properly after installation into a data processing system. Usually, a test connector is removably secured to edge connectors of the electronic memory modules under test to make contact to the surface pads for connecting the electronic memory modules to testing circuitry. In the prior art, automatic memory module test equipment included automatic memory module handlers. These prior art handlers typically utilized a conveyer belt for automatically feeding components through the test equipment. A stop was often utilized which was selectively retractable. The stop was selectively extended to stop the electronic memory module under test in a second position for engaging a connector to electrically connect the electronic memory module under test to the test equipment circuitry.
As is well known in the art, memory modules and the edge connectors therefor have been greatly reduced in size in recent years. The size of the connecter contact members has often been expressed in terms of the distance between corresponding points on adjacent ones of the surface contact pads of the electronic memory modules. Prior art contact pad spacing have been sized from 0.050 to 0.070 inches apart (50 mil to 70 mil). More recently, component spacing of 0.030 inches (30 mil) down to 0.025 inches (25 mil) have been utilized in fabricating electronic memory modules.
These recent reductions in the size of spacing between contact pads have reduced the ability of prior art handlers to adequately position the electronic memory modules edge surface contact pads for aligning with the test leads of the test connectors mounted to the handler equipment. This often results in test failures caused by misalignment between the test leads and the surface contact pads. Improvements for more closely aligning electronic memory modules under test with tester equipment connectors are desirable, such that alignment therebetween will be improved and the failure rate of electronic memory modules caused by inadequate testing procedures and equipment will be reduced.
Additionally, the testing of memory modules has become extremely sensitive to electrical current and testing signal irregularities. Prior art required adapters that are the actual testing contact with the memory testers. These prior art adapters produce current and testing signal irregularities that produce false or inaccurate testing results. Physically, the “fingers” are 1.5 inch long. A transition board also has to be made to adapt the signal source connection to the “finger” connection. This complicates the electrical path by the addition of one connector transition and also the 1.5 inch length of the contactor. This addition works fine at a low frequency signal situation (under 50 Mhz) while it totally distorts the signal at high frequency. The term is call “impedance mis-mismatch”. It essentially means that a normal signal goes through a not-so-smooth path and part of the signal is bounced back (echo) instead of getting through. The bounced back signal causes the original signal to have a “double vision” at the end of the path and render the signal un-recognizable.
The recent increases in sensitivity of memory modules to current and signal irregularities make it highly desirable to develop testing mechanisms and methodologies that minimize irregularities in current and signal.
Additionally, prior art handler equipment uses a retractable platform on which the module rests during the testing process. When testing is completed, the platform is retracted, allowing the module to drop into a mechanism that moves the module away from the testing position. The retractable platform in prior art requires constant adjustment because memory modules do not have a uniform thickness. Some modules have memory chips attached to only one side of the module board. Some modules have memory chips attached to both sides of the module board. Memory chips are also uneven in thickness. This uneven thickness of memory modules requires adjustment of the retractable platform. Misalignment of the platform can cause jams because the modules are then not in position for the testing process. Misalignment of the platform also causes test failures due to simple misalignment of the module in the memory tester. Additionally, repeated insertions of electronic memory modules into the testing interfaces of electronic memory module testers causes wear in the plastic edges of the interfaces. The wear of these edges results in improper alignment of electronic memory modules.
The recent developments in memory module design, as described previously, make it extremely important to develop a mechanism for the insertion of memory modules in the memory testers that prevent jams and misalignment.
The invention as described herein corrects the aforementioned technical problems in the field of electronic memory module testing. The invention aligns and positions electronic memory modules more precisely than prior art. The use of guides and rails in the invention prevent misalignment. The implementation of protective interface guides prevents misalignment resulting from repeated inserts of electronic memory modules.
Automation. Industries that utilize memory modules usually utilize memory modules in high quantities. Therefore, the testing of memory modules is a process that must test high quantities of memory modules. The automation of the memory module testing is essential to the profitable and efficient operation of businesses that use memory modules. The industry uses handler equipment to bring untested memory modules to the memory tester, insert the memory modules into the tester, and sort the tested memory modules.
Prior art handlers use stacking columns that hold vertically stacked memory modules. Prior art stacking columns were susceptible to uneven stacking by operators. Unevenly stacked modules would enter the testing process unevenly and in positions that would cause jams in the testing pathway. The possibility of these jams renders prior art unsuitable to be used in the absence of an operator. The invention described herein produces uniform and even stacks of electronic memory modules.
Prior art handlers sort memory modules by depositing the modules into bins or receptacles. This method of sorting causes the memory modules to fall into bins. The falling modules can be damaged. As a result of this damage, even modules that pass testing can be subsequently damaged in the sorting process. The invention described herein automatically stacks tested electronic memory modules and eliminates the problem described above.
Prior art handler equipment
Ip Chi Wo
Khouw Richard S.
Lim Hua Kin
Computer Service Technology, Inc.
Howison Thoma & Arnott, L.L.P.
Kerveros James
LandOfFree
Electronic memory module handler with direct socket... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electronic memory module handler with direct socket..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic memory module handler with direct socket... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2927649