Electronic identification, control, and security system and...

Communications: electrical – Selective – Interrogation response

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S010500, C340S572100, C340S572300

Reexamination Certificate

active

06317028

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a system and method to remotely communicate with appliances and other consumer electronics, and more particularly to a system and a method which allows remote communication, control, and security for consumer electronics via radio frequency transmission and the electric power distribution network.
BACKGROUND OF THE INVENTION
Continued advances in the field of consumer electronics and appliances have added a significant number of features to these devices which make their operation simpler, while at the same time increasing their overall functionality. Most pieces of consumer electronics and appliances manufactured today include some sort of computer control within the unit itself. These computers control everything from automatically remembering leap year and adjusting the number of days in February, to the on-screen menu display, picture in picture control, cook cycle time control, to name just a few. While these microprocessors are controlling ever increasing functionality of the consumer electronic devices and appliances into which they are incorporated, their capacity for further increases remains vast. Even with these advanced features and computer control, modern manufacturing techniques have allowed the cost of these devices to decrease since their initial introduction onto the market. However, even with such decreases, the cost of these electronic devices and appliances still remains fairly expensive.
A persistent problem with electronic appliances exists mainly due to their expense and ease of portability. This problem is the ease with which electronic appliances are stolen from homes, warehouses, and during transit. Because these devices are so enjoyable to own, and yet are priced out of the reach of many citizens, a significant market for stolen electronic appliances exists. Their ease of portability and lack of security features and identification, as well as the relativity high probability that the recipient of the stolen merchandise will not be caught, or if so not prosecuted, only exacerbates this problem. Currently, most consumer electronics devices only carry a written serial number on the device to identify it in the event of a theft, however, since many individuals fail to record or register this serial number, attempts to recover merchandise once it has been stolen often prove futile.
At the manufacturing level, companies are continually looking for new methods to keep track of their inventory in an effort to better manage the business and prevent loss through theft. One relatively new technology which many companies are now beginning to utilize is a system of product identification and tracking known as RFID (radio frequency identification). This new technology is primarily used for inventory control and tracking within the factory area and warehouse, and is typically associated with the packaging of the product (a RFID label or tag on the box), and not with the product itself.
RFID systems use radio frequency to identify, locate, and track items through a system comprising primarily of three components. The system operates under control of a host computer which contains all of the inventory database information required for operation of this system. A passive RFID tag is the second component of the system and is typically applied via a disposable label to product packaging in similar fashion to a bar code tracking label. This disposable label contains an antenna coil and a silicon chip, and requires no separate power source. The silicon chip includes basic modulation circuitry and non-volatile memory to store product identification information. This disposable label is energized by the third component of the system, a RFID reader or interrogator, which transmits a RF signal to the disposable label. As the radio frequency signal passes through the antenna coil, an AC voltage is generated thereacross. This voltage is rectified to supply power to the silicon chip which then transmits the information stored therein back to the reader. This information transmission technique is commonly known as backscattering.
Current RFID labels work in one of three frequency ranges. Low frequency tags generally operate below 135 kHz and are commonly used for access control and industrial control. While energy at this frequency readily moves through people and other obstacles, data rates are relatively low compared to those of other technologies. Another frequency band used for RFID labels centers around 2.45 GHz, and operates under the same regulatory guidelines as local area networks OpenAir and 802.11. While data rates are greatly increased over the low frequency systems, the ability to transmit this energy through obstacles is somewhat reduced. A benefit of this higher frequency system is that the antennas may be much smaller, and can be etched or screen printed instead of wound from wire. The third frequency band commonly used for RFID labels is 13.56 MHz, a frequency that has been allocated in much of the industrialized world. While data rates are higher and antennas are smaller than with other frequencies, the read ranges are often shorter. A benefit of using this frequency exists due to the world wide allocation of this frequency which means that products may be deployed around the world with little or no modification to the RHD label.
The amount of information which is able to be carried by a RFID label is be quite large. One commercial implementation of a RFID label is marketed by Texas Instruments under the name Tag-It. These commercially available RFID labels provide 256 bytes of user programmable read/write memory partitioned into eight 32 byte blocks. A ninth block contains revision and manufacturing information, while a tenth block contains a unique 32 byte ID code sequentially assigned during manufacturing which is able to provide 4.3 billion unique label identities. Other designs including more or fewer programmable bytes are also available. The distance at which the readers may read the memory information from the RFID label depends on environmental conditions and obstructions, and for the TI Tag-It label is roughly equivalent to distances achievable by state of the art hand held CCD bar code scanners. However, whereas bar codes must be visible and relatively close to the reader in order to be read, the RFID label may be hidden from view, and depending on the design, may be read from several feet away, perhaps even 100 yards away without human intervention.
In addition to increasing the distances at which RFID labels may be utilized, the technology associated with RFID continues to increase the number of RFID labels which may be read simultaneously by a single reader. Various systems exist for simultaneous RFID tag communication. One such method marketed by Texas Instruments is known as SID (Simultaneous Identification) and is currently able to read thirty tags per second. The SID algorithm uses a binary tree search through the unique code stored in the RFID label, using commands that can silence tags momentarily to allow the read of information from other tags. Another system takes advantage of a pseudo random number generator within the RFID label to command the tags to stop transmitting until a generated pseudo random number counts down. In this way, the probability of two tags counting down to the same pseudo random number and beginning to retransmit simultaneously is sufficiently low to allow proper operation of the system.
While the RFID label system promises great advances in the field of product tracking and inventory control, its ability to prevent theft is somewhat limited. Specifically, since the RFID labels are placed on product packaging, a thief would merely need to remove this label from the packaging in order to defeat any further tracking of the product. Alternatively, a thief would simply need to remove the product from the packaging to also defeat further product tracking. A product so stolen remains fully operational, and therefore, has a high black market value.
While the removal of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronic identification, control, and security system and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronic identification, control, and security system and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic identification, control, and security system and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2569970

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.