Electronic flight kit and method

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Aeronautical vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S014000, C701S024000, C244S075100

Reexamination Certificate

active

06606544

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to electronic flight information management systems.
BACKGROUND OF THE INVENTION
Rapid identification and mitigation of mechanical faults is a crucial priority in both the military and civil aviation communities. The speed and accuracy with which a pilot can detect, diagnose, corroborate, and respond to mechanical faults have large effects not only on safety but also on the ability to complete the mission, especially in military aircraft. In the past decade, research has addressed this safety issue on two fronts—advanced mechanical diagnostics and aircrew aiding. This application is based solely on aircrew aiding and the linkage of aiding information to specific fault alerts generated from other systems.
Significant progress has been made in the field of mechanical diagnostics. New systems designated as Health and Usage Monitoring Systems (HUMS) have continued to mature and have increasingly been integrated into operational aircraft over the past decade.
HUMS utilizes new sensors to provide critical information for maintainers on the presence of potential mechanical faults which may not be detected by current Warning Caution Advisory (WCA) systems. WCA systems generally consist of rows of warning lights which provide a binary (i.e., light on or light off) indication of a potential problem. HUMS has been developed and offered exclusively as a maintainer application rather than an aircrew aiding system. HUMS generates large, incompressible quantities of data and tends to be focused on specific mechanical components rather than on fault scenarios that would be relevant to aircrew decisions.
Pilot alerting, via existing WCA systems or a new HUMS system, provides only an indication of a potential mechanical fault. Once the pilot is alerted, he or she must quickly understand the nature of the fault, assess its impact on safety of flight, decide on a course of action, and initiate corrective actions. Such sequences of actions have been incorporated into Navy (as well as other uniformed service) doctrine and is embodied in all Naval flight manuals designated as NATOPS (for Naval Air Training and Operating Procedures Standardization). NATOPS training is paramount for all Navy aviators and requires memorization of much of the information contained in the operator's manual. To offset potential memory errors, NATOPS Pocket Checklists (PCL) are used in-flight. The PCL contains normal, special, and emergency checklists in the form of quick reference steps to assist the pilot in performing the correct procedures during normal and emergency situations. During emergency situations, time pressure, workload, and stress all increase, thus creating a need for aircrew aiding.
In civil aviation, less standardization of flight manuals and checklist exists. Individual airlines have been given control (by the Federal Aviation Administration or FAA) to maintain documentation and develop procedures for in-flight use. Great differences existed between the major US airlines in terms of flight manuals and checklists but all airlines are accountable to and must seek approval from the FAA.
Electronic checklists have been introduced in some recent commercial aircraft, such as the Boeing 777 and the Airbus A330/A340. These advanced aircraft also offer integrated aircraft status information systems (the Airplane Information Management System, AIMS, for the Boeing 777, and the Electronic Centralized Aircraft Monitor, ECAM, for the Airbus A330/A340). United Airlines has recently developed a system called the Electronic Flight Bag (EFB) which provides electronic access to flight manuals, but not including electronic checklists. None of these existing systems provides a complete integrated information management system; rather, they merely provide components.
The concept of providing an information management system in the cockpit seems a natural evolution of paper manuals and checklists. Integration of these data into a computer-based form also offers the infrastructure for communication with advanced diagnostic systems as well as future applications such as intelligent agents and intelligent embedded training.
The linkage of electronic checklists to diagnostic systems raises many research issues in addition to the natural concerns about diagnostic system reliability and efficacy. Research and guidelines for the development of electronic versions of aircraft flight manuals have, however, been slow to appear. Outside of our own research program, we have identified only one prior research program in this area. A NASA research effort in the early 19990s addressed the fundamental issues of human factors of flight deck checklists and was followed by two experimental studies concerning the human performance aspects of electronic checklists. Although this NASA program has provided valuable guidance for the development of flight deck checklists and their electronic implementation, there are many empirically unresolved issues in checklist design for aircraft cockpits. For elements of flight manuals beyond the checklists, no empirical guidance reported in any publications has been found.
SUMMARY OF THE INVENTION
The inventive flight kit is a process and set of software tools for:
1. Marking up and restructuring of flight information content such as manuals, checklists, aerodynamic data, and alerting information;
2. Converting and storing this content in an electronic form, such as XML;
3. Dynamically generating a user interface based on the specific data;
4. Delivering this data in a variety of ways to the flight crew of fixed wing aircraft/rotorcraft, both in-flight and on the ground using a stand alone software application capable of running under multiple operating systems and
5. Providing remote data updates and management of all fielded flight kit applications via Internet connectivity, via a multi-tiered client/server infrastructure.


REFERENCES:
patent: 4787053 (1988-11-01), Moore
patent: 4811245 (1989-03-01), Bunker et al.
patent: 6441773 (2002-08-01), Kelly et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronic flight kit and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronic flight kit and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic flight kit and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3098785

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.