Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
2001-07-27
2003-01-14
Tso, Edward H. (Department: 2938)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C361S710000
Reexamination Certificate
active
06507494
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to electronic equipment enclosures for housing telecommunications, signaling, and other similar electronic equipment. More particularly, the present invention relates to such an electronic equipment enclosure which provides a greater range of possible mounting orientations and an ability to pivot or tilt while mounted; reduces crosstalk through separation of transmit and receive terminals; allows for convenient top access to both protective circuitry and test circuitry; provides improved pathways for thermal conduction, as well as other heat dissipation features; and prevents inadvertent disengagement of the electronic equipment due, for example, to movement or rough handling of the equipment enclosure.
2. Description of the Prior Art
It is often necessary to house telecommunications, signaling, and other similar electronic equipment in protective electronic equipment enclosures so that the equipment may be located where needed, often in relatively harsh operating environments such as mounted on telephone poles or within subterranean manholes. Thus, these equipment enclosures must be designed to protect the electronic equipment from environmental hazards, such as sun, moisture, dust, and debris, as well as damage from vandalism and attempted theft.
For example, ever-increasing use of wide area networks (WANs), particularly the Internet, and other telecommunication innovations has increased ISDN, (X)DSL, and T
1
, in homes and businesses. Due to signal propagation limitations, these digital services require special electronic equipment, including repeaters and doublers, to regenerate signals when end users are too far from a provider's central office. Thus, it is important that the equipment enclosures safely and securely house multiple repeater units or “cards” or other similar electronic equipment in a space efficient manner.
Unfortunately, many prior art equipment enclosures suffer from a number of disadvantages, including being undesirably limited with regard to possible mounting orientations, and an inability to maneuver the mounted equipment enclosure for easier access to the interior thereof. Furthermore, the prior art suffers from undesirable crosstalk and other interference problems due to interfering transmit and receive wires. One known solution to this latter problem is to twist the transmit and receive wires about one another at a rate of approximately two twists per inch, thereby substantially eliminating the interfering electromagnetic fields generated by the wires. Additionally, many prior art equipment enclosures do not provide for convenient access to either protective circuitry, such as lightning surge protection circuitry, or test circuitry, often requiring that a substantial portion of the electronic equipment be removed or its function otherwise disrupted in order to access one or both circuitries.
It is also important that the equipment enclosure facilitate dissipation of potentially damaging levels of heat generated by the operating electronic equipment. Electricity to power fans or other artificial cooling means is typically not available to the equipment enclosures and so dissipation of heat that can reach temperatures over 200° F. must be accomplished through natural conduction and convection to ambient air. Such passive heat dissipation has become increasingly more difficult, however, as the electronic equipment has become faster, more powerful, and smaller, thereby generating greater amounts of potentially damaging heat in increasingly confined or sun-exposed operating environments. Unfortunately, another problem with existing equipment enclosure designs is that they do not make the most efficient use of natural cooling mechanisms. For example, in many prior art equipment enclosures, cooling problems are exacerbated by repeater card arrangements that retain generated heat and, furthermore, transfer the generated heat between adjacent cards and other electronic equipment rather than to the surrounding environment. Many such equipment enclosures attempt to compensate with complex mechanical linkage assemblies meant to provide a continuous pathway for thermal conduction to the ambient environment. Unfortunately, such mechanical linkages are typically expensive to manufacture, difficult to use, and undesirably increase the size and weight of the equipment enclosures.
Additionally, it is desirable that the electronic equipment be readily accessible and conveniently removable without being prone to inadvertent disengagement during, for example, movement or rough handling of the equipment enclosure. A variety of retaining mechanisms are known in the art, most of which include an actuatable or removable mechanism associated with each piece of electronic equipment. Unfortunately, though preventing inadvertent disengagement of the electronic equipment, these existing mechanisms typically result in additional time and labor required to remove the electronic equipment when desired.
Due to the above-identified and other problems and disadvantages in the prior art, a need exists for an improved electronic equipment enclosure.
SUMMARY OF THE INVENTION
The present invention solves the above-described and other problems and disadvantages to provide a distinct advance in the art of electronic equipment enclosures. More particularly, the present invention provides an electronic equipment enclosure for housing electronic equipment, such as, for example, telecommunications, signaling, and other similar electronic equipment, wherein the equipment enclosure provides a number of advantages over the prior art, including more effectively dissipating excess heat, thereby prolonging the life of the electronic equipment and preventing premature failure thereof due to damaging levels of retained, internally generated heat. This is accomplished in part by providing improved pathways for thermal conduction without use of complex, expensive, and heavy mechanical linkage assemblies found in the prior art.
In a preferred embodiment, the enclosure comprises an outer housing; a mounting bracket; a pivot bracket; a plurality of sleeves, with each sleeve being associated with a plurality of transmit terminals, a plurality of receive terminals, protective circuitry, and test circuitry; a spreader plate; and a heat sink or card retainer. The stainless steel outer housing is operable to internally house and protect the electronic equipment from environmental hazards as well as damage from vandalism and attempted theft. The outer housing further provides mounting and interface structures for coupling with the mounting bracket or the pivot bracket; a cable connector, cable interface, or interface block; and, where appropriate, pressurization controls. The mounting bracket is operable to removably secure the outer housing to a mounting structure or surface, such as, for example, a telephone pole, a building wall, or a wall or other surface within a subterranean manhole. The pivot bracket is interposable between the outer housing and the mounting bracket, being pivotably or hingedly coupled with one and fixedly coupled with the other, to allow the outer housing to be tilted up to 30° relative to the mounting bracket, thereby both facilitating access and allowing for a greater variety of mounting locations and orientations.
The plurality of sleeves are operable to receive, retain, and interface the electronic equipment. Although not limited to housing telecommunications equipment, the equipment enclosure as described herein includes eight sleeves, each operable to house one double-wide repeater card or, with a sleeve-bisecting insert in place, two single-wide repeater cards.
The transmit and receive terminals couple with transmit and receive wires to, respectively, transmit and receive signals to and from a pendant cable. Within the pendant cable, the transmit and receive wires are separated and shielded from one another in order to reduce cross-talk or other interference. In the prior art, the transmit and
Hutchison Randall D.
Schiffbauer Robert
ADC Telecommunications Inc.
Hovey & Williams, LLP
Tso Edward H.
LandOfFree
Electronic equipment enclosure does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electronic equipment enclosure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic equipment enclosure will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3029361