Electronic device cabinet

Supports: cabinet structure – For particular electrical device or component – Housing for computer or computer related equipment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C312S223100, C261S004000, C361S689000

Reexamination Certificate

active

06769748

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an electronic device cabinet and more particularly to the electronic device cabinet used to house parts that tend to generate a large amount of heat.
2. Description of the Related Art
Various electronic devices including a liquid crystal projector, personal computer or a like are fabricated by using desired electronic parts such as an LSI (Large Scale Integrated circuit). To manufacture such electronic devices, a cabinet, an electronic device cabinet used to house and mechanically hold the electronic devices and to provide an electrical connection is required. A conventional electronic device is composed of an insulating material including a resin, metal or a combination of resin and metal.
In recent years, as parts or components to be housed in the electronic device cabinet increase in performance, electronic devices are being made highly functional as well. For example, a liquid crystal projector has become highly functional by employing a high-intensity lamp, and a personal computer also has become highly sophisticated by mounting, for example, a high-speed MPU (Micro Processing Unit).
As electronic devices become highly functional, heat produced in the electronic device cabinet due to such highly functional components including the high-intensity lamp, high-speed MPU or like, becomes a problem. Therefore, in order to lengthen useful life of housed electronic devices and to improve their reliability, it is important to take an effective measure for ensuring heat radiation within the electronic device cabinet.
Conventionally, in order to dissipate such heat produced within the electronic device cabinet outside, a fan is used, as a heat radiation method, which is mounted within the electronic device cabinet. In addition, to improve heat radiation efficiency by using the fan, a comparatively large-sized fan that can provide a sufficient volume of air is required.
On the other hand, in the liquid crystal projector, personal computer or like, it is required that they are not only compact and lightweight for achieving portability and energy-saving but also highly functional in order to maintain their high performance. To meet these requirements, it is inevitably required that the electronic device cabinet itself should be compact and lightweight. However, if the electronic device cabinet has to be compact and lightweight, there is no choice but to sacrifice space within the electronic device cabinet itself and therefore it is impossible to mount the comparatively large-sized fan that can provide the sufficient volume of air within the electronic device cabinet. As a result, there remains a risk of reduction in heat radiating characteristic in the electronic device cabinet.
To solve this problem, a method for achieving effective heat radiation is proposed which can provide sufficient heat radiation effects even in limited space having a small area in the electronic device cabinet. That is, a heat sink or heat pipe made of metal being excellent in thermal conductivity, for example, aluminum, is conventionally attached, as heat radiation device, to highly functional parts such as the high-intensity lamp, high-speed MPU or the like which are main heat producing sources within the electronic device cabinet. Moreover, when a part, at least, of the electronic device cabinet is constructed from metals. The metal include aluminum, magnesium alloy or a like which are excellent in thermal conductivity.
Since heat produced in the electronic device cabinet is dissipated outside by introducing such heat radiation devices made of metal being excellent thermal conductivity as described above, the electronic device cabinet can be made compact and lightweight without degradation of heat radiation efficiency. When the heat radiation device is constructed from such metal being excellent in thermal conductivity, since its structure becomes complicated, an increase in production costs is inevitable. Due to a complicated structure of the heat radiation device, it takes much time to assemble or disassemble the electronic device cabinet, causing a reduction in its maintainability. Moreover, if the electric device cabinet is composed of metal being excellent in thermal conductivity, the electronic device cabinet itself becomes heated, in a handy-type electronic device in particular, thus interfering with its portability.
Furthermore, in recent years, designing enabling products to be eco-friendly from a viewpoint of general environmental problems that are global in scope is required for various electronic devices as well. That is, it is required that electronic devices including the liquid crystal projector and personal computer described above should be designed so that they can be reused or recycled after being disposed of. In other words, it is required that products should be designed so that they can be easily assembled and disassembled when reused or recycled and that use of parts composed of a combination of composite materials should be minimized as much as possible. It is also required that a part should be constructed in a form of a module to make its life long and to reuse it. Such designing practices for electronic devices described above should be also applied to the electronic device cabinet.
The conventional electronic device cabinet is successfully made compact and lightweight without degradation in the heat radiation efficiency. However, there remain problems in that an increase in production costs and degradation in maintainability are inevitable, therefore making it difficult to design the electronic device cabinet to be very eco-friendly. That is, as described above, in the conventional electronic device cabinet, since the heat radiation device made of metal being excellent in thermal conductivity is attached to the heat producing sources themselves within the electronic device cabinet, sufficient heat radiation effects can be achieved even in limited space and the electronic device cabinet can be made compact and lightweight without degradation in heat radiation characteristic. However, in many cases, structure of such heat radiation devices is inevitably complicated, thus causing the increase in production costs and decrease in maintainability. Moreover, when the electronic device cabinet is designed so as to be eco-friendly in consideration of future reuse or recycling, an increase in weight of components constituting the electronic device cabinet is inevitable, thus causing a high cost as well.
SUMMARY OF THE INVENTION
In view of the above, it is an object of the present invention to provide an electronic device cabinet which can be made compact and lightweight without degradation in heat radiation efficiency and can avoid an increase in its production costs and a decrease in its maintainability and which can be easily designed so as to be eco-friendly, easily reused or recycled.
According to a first aspect of the present invention, there is provided an electronic device cabinet for housing desired parts containing electronic parts constituting an electronic device, the electronic device cabinet including:
an intermediate frame body made of insulating materials;
an upper covering body composed of metal or alloy mounted in an upper portion of an intermediate frame body in a freely detachable manner;
a lower covering body composed of metal or alloy mounted in a lower portion of the intermediate frame body in a freely detachable manner.
In the foregoing, a preferable mode is one wherein the upper covering body has an approximately rectangular or square shape; and the lower covering body has an approximately rectangular or square shape.
In the foregoing mode wherein the upper covering body has an approximately rectangular shape; and the lower covering body has an approximately rectangular shape, a further preferable mode is one wherein the intermediate frame body has both side faces extending in a longitudinal direction and both side faces extending in a traverse direction and wherein two or more fi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronic device cabinet does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronic device cabinet, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic device cabinet will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3357993

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.