Electronic device and control method for electronic device

Horology: time measuring systems or devices – Power supply details

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C368S204000, C320S121000, C320S130000, C713S320000, C713S321000

Reexamination Certificate

active

06693851

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an electronic device and control method for the electronic device, and particularly relates to an electronic device wherein the operating modes of the electronic device can be switched between a drive mode and a power saving mode, and a control method for the electronic device.
2. Description of the Related Art
An example of an electronic device of recent years is the electronic wristwatch. These wristwatches contain a power supply, the power supply including a power generating device having a rotating weight, and a storage unit (e.g. high-capacity capacitor) for storing electrical energy generated by the power generating device. This type of electronic timepiece is capable of operating as a watch for long periods of time without battery replacement because the time display is performed by supplying electrical energy delivered from the capacitor to the time display unit.
In this way, electronic timepieces having power generating devices supply stable electrical energy for long periods of time. Thus, when the power generating device has been in a non-generating state for a predetermined period of time or when the electronic timepiece is removed from the user's wrist, for example, the condition is detected, and the operating mode of the electronic timepiece is switched from an active mode (display mode) in which time display is performed to a power saving mode in which time display is not performed.
Here, in the power saving mode of the electronic timepiece, time display is not performed, and electrical energy is supplied only to a control circuit for keeping track of the current time. On the other hand, in the display mode (active mode) in which the normal time display is performed, not only is electrical energy supplied to the control circuit, but for example in the case of an analog watch, electrical energy is also supplied to the drive circuit for moving the hands.
When a user puts an electronic timepiece that is in power-saving mode onto his wrist and power generation commences, a switch is made from the power-saving mode to the display mode, and in the time display unit, the display is restored to the current time based on the data stored in a counter. For example, in an analog watch using hands, the hands are sped forward to restore it to the current time.
However, when an electronic timepiece continues to be in the power-saving (non-generating period) for a long time, the electrical energy stored in the high-capacity capacitor is gradually consumed. For this reason, when there is very little electrical energy in the high-capacity capacitor, restoration to the current time becomes impossible. Additionally, in this case, a lot of time is required to accumulate enough electrical energy to reactivate the time display unit itself, so that there is a risk to the re-activating ability of the electronic timepiece.
The present invention has been made in consideration of the above-described situation, and offers an electronic device and control method for the electronic device wherein, when there is not enough electrical energy to return to the current time in the power supply during the power-saving mode, the consumption of electrical energy is reduced to preserve the electrical energy of the power supply, thus enabling the driven unit to be quickly reactivated.
SUMMARY OF THE INVENTION
A first embodiment of the present invention is characterized by comprising a chargeable power supply unit for supplying electrical energy, a drive control unit operated by the electrical energy supplied from said power supply unit, for outputting a drive signal; a driven unit driven by said drive signal, a mode switching unit for switching the operating mode of said driven unit between a drive mode for normal operation and a power-saving mode based on a preset first condition; and an operation suspending unit for suspending operation of said drive control unit when the amount of electrical energy stored in said power supply unit is determined to be smaller than a predetermined electrical energy amount based on a preset second condition while in a power-saving mode due to said mode switching unit.
A second embodiment of the present invention is characterized by that in the first embodiment of the present invention said operation suspending unit suspends supply of the electrical energy from said power supply unit to said drive control unit when suspending the operation of said drive control unit.
A third embodiment of the present invention is characterized by that in the first embodiment of the present invention said drive control unit comprises a control circuit operated by electrical energy supplied from said power supply unit, for outputting a control signal, and a drive circuit operated by electrical energy supplied from said power supply unit, for outputting a drive signal to said driven unit based on the control signal, and said mode switching unit supplies electrical energy to said control circuit and drive circuit in said drive mode, and supplies electrical energy to only said control circuit in power-saving mode.
A fourth embodiment of the present invention is characterized by that in the first embodiment of the present invention said power supply unit comprises a power generating unit for converting external energy into electrical energy, and a power storing unit for storing electrical energy supplied from said power generating unit and supplying the electrical energy to said drive control unit.
A fifth embodiment of the present invention is characterized by that in the first embodiment of the present invention said power storing unit comprises an auxiliary battery or a capacitor.
A sixth embodiment of the present invention is characterized by that in the fourth embodiment of the present invention a power generation state detecting unit for detecting whether or not said power generating unit is in a power generation state is provided, and said first condition is whether or not said power generating unit is in a power generating state is determined by said power generation state detecting unit.
A seventh embodiment of the present invention is characterized by that in the sixth embodiment of the present invention said power generation state detecting unit comprises an energy amount determining unit for determining whether or not the amount of electrical energy output from said power generating unit exceeds a criterion energy amount, and a power generation time determining unit for determining whether or not a duration over which the electrical energy amount is determined by said energy amount determining unit as to exceed the criterion energy amount exceeds a criterion time value.
An eighth embodiment of the present invention is characterized by that in the first embodiment of the present invention a carriage state detecting unit for detecting whether or not said electronic device is in a carried state is provided, and said first condition requires, for switching the operating mode of said driven unit from said drive mode to said power-saving mode, that when said electronic device is found to be in a non-carried state by said carriage state detecting unit, and the duration over which the electronic device is in a non-carried state continues for a predetermined time, and said first condition requires, for switching the operating mode of said driven unit from said power-saving mode to said drive mode, that when the electronic device has switched from a non-carried state to a carried state according to said carriage state detecting unit.
A ninth embodiment of the present invention is characterized by that in the first embodiment of the present invention a voltage detecting unit for detecting the voltage of said power supply unit is provided, and said second condition requires that the voltage of said power supply unit detected by said voltage detecting unit goes below a predetermined voltage.
A tenth embodiment of the present invention is characterized by that in the first embodiment of the present inve

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronic device and control method for electronic device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronic device and control method for electronic device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic device and control method for electronic device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3278299

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.