Electronic control circuit

Valves and valve actuation – Electrically actuated valve – Remote or follow-up control system for electrical actuator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06394414

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an electronic control circuit for controlling an electromagnetic valve having an armature, in particular for a heating and/or air-conditioning system in a motor vehicle, having an electronic switching element in series with the coil of the valve.
BACKGROUND INFORMATION
International Patent Publication No. WO 94/19810 describes a control circuit for a solenoid valve which varies the driving current of the solenoid valve over time when the solenoid valve is to be brought from a flow-through position to a closed position. This is done because the driving current of the valve is reduced (but not to zero) so that the solenoid valve drops. Immediately thereafter, the driving current is increased again, but the current value remains below a value at which the solenoid valve is moved into its closed position. Consequently, the control circuit controls the driving current during the shut-down phase.
Conventional solenoid valves can be operated with a square-wave pulse-like driving current. In other words, the excitation of the solenoid is switched either off or on, and it is at the maximum when switched on.
In addition, it is known that the driving current for the coil excitation can first be controlled at an elevated value at the start of the pulse, with the coil excitation being returned to a nominal value at which the armature remains in a holding position (after a spring-loaded armature has overcome the first spring forces and adhesive friction).
One disadvantage of the conventional solenoid valves is that they produce relatively loud switching noises in closing when the armature and/or the valve strikes a stop in closing. If the valve is used to control an air-conditioning system in a motor vehicle, for example, the switching noises will be disturbing especially in slow driving and when the vehicle is standing still, because then the engine and driving noises are low.
SUMMARY OF THE INVENTION
An electronic control circuit according to the present invention for controlling an electromagnetic valve having an armature, in particular for a heating and/or air-conditioning system in a motor vehicle, having an electronic switching element in series with the coil of the valve offers the advantage compared to the related art that the switching element controls the valve voltage (or the valve current) applied to the coil so that the valve voltage reaches a first value when the valve is switched on; then the valve voltage is reduced to a second value which is lower than the first value, and thereafter the valve voltage assumes a third value which is greater than the second value and represents a holding voltage for holding the armature in its switched-on position. Due to the fact that the electromagnetic valve is first operated at a first value of the valve voltage, the armature is first accelerated to the extent that the initial spring forces and the adhesive friction are overcome. The armature thus set in motion then experiences a reduced acceleration due to the reduced electromagnetic energy, because the second value of the valve voltage is lower than the first value, but the second value is preferably selected so that the armature essentially maintains its speed. In the course of the remaining switch-on operation, the valve voltage assumes a third value which is greater than the second value, so that the armature of the valve enters the end position in a very short period of time despite the previous reduction in voltage from the first value to the second value. Furthermore, this yields the advantage that the armature striking the end stop is not associated with the loud impact noise mentioned in the related art, because the voltage and current program according to the present invention permits rapid switching while nevertheless preventing an excessive speed on impact with the end stop.
According to the present invention, the first value of the valve voltage or the valve current is in the form of a switch-on pulse, with the amplitude of the switch-on pulse being greater than half the nominal value. The period of the switch-on pulse amounts to approximately 0.1 to 0.6 times the valve switching time with abrupt excitation of the valve with a voltage higher than the holding voltage. As an alternative, the switch-on pulse may be composed of multiple successive pulses.
In addition, the second value of the valve voltage or valve current forms an initial value for a switch-on ramp. The second value amounts to a maximum of 0.8 times the nominal value of the valve voltage and/or valve current. After the valve voltage and/or valve current has been reduced from the first value to the second value, the switch-on pulse is followed by a voltage and/or current characteristic having a linear rise. As an alternative, the rise of the switch-on ramp may be nonlinear, preferably progressive or degressive. From this it can be deduced that the electromagnetic valve is operated with a magnetic energy that is reduced but is specifically controlled to increase during the switch-on ramp, so the acceleration of the armature is reduced.
In addition, it is provided in a preferred embodiment that the switch-on pulse is followed by a “dead time” during which the valve voltage and/or valve current is kept constant at the second value so that ramping of the switch-on ramp is delayed.
The end value of the switch-on ramp preferably forms the third value, with the third value corresponding in particular to the nominal value of the valve voltage and/or the valve current. The third value has a level at least corresponding to the holding voltage of the armature in its switched-on position. The valve voltage and/or valve current is kept constant for a period of time during which the valve is in the closed position. This period of time can be varied as needed.
To shut down the valve, the valve voltage and/or valve current is reduced abruptly, namely to a value between the third value and the voltage-free state. In another embodiment of the present invention, this value at the same time forms an initial value of a shut-down ramp. During the shut-down ramp, the valve voltage and/or valve current drops linearly to zero. As an alternative, the characteristic of the shut-down ramp may have a nonlinear decline, i.e., it may be progressive or degressive in particular. The duration of the shut-down ramp is determined by a coil free-wheeling diode, for example, connected in parallel to the coil.
In another embodiment, the individual control segments (switch-on pulse, dead time, switch-on ramp, switched-on position and shut-down ramp) are not determined by fixedly preselected conditions, but instead by the fact that instantaneous parameters of state determine the amplitude and/or the duration of at least one control segment. In a motor vehicle, for example, such parameters of state include the battery voltage, the rpm of a water pump in a combustion engine, the fluid pressure of a water circuit for an air-conditioning system and the coil temperature. In addition, it is necessary to detect the parameters of state by using suitable sensors. For example, a thermocouple may be provided to detect the coil temperature.
In addition, the level of the switch-on pulse, i.e., the level of the first value, is preferably adjusted to a desired level by the electronic switching element independently of the power supply voltage (for example, this may be the vehicle electric system, i.e., the battery voltage) of the electronic control circuit. This is important in particular when the battery voltage is not constant because of external influences, e.g., the outside temperature, because then reproducible switch-on operations are always achieved nevertheless.
Furthermore, the duration of the switch-on pulses is automatically adjustable in particular. The duration of the switch-on pulse depends on the position of the armature. The position of the armature is derived from the characteristic of the valve voltage and/or valve current by using a suitable electronic circuit which can be assigned to the elec

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronic control circuit does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronic control circuit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic control circuit will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2841886

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.