Electronic control and method for power sliding van door...

Movable or removable closures – With operator for movably mounted closure – Operator drives closure along guide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C049S280000

Reexamination Certificate

active

06430875

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a control system for a power drive for moving a movable closure, such as a sliding door along a fixed path between an open position and a closed position with respect to a portal defining a passage through a barrier, and more particularly to a control system for a sliding door system accommodating manual operation and powered operation of a sliding door of a vehicle in forward and rearward movement along a fixed path between an open position and a closed position with a striker latch mechanism, where a power striker moves the sliding door from a position adjacent the closed position to a fully closed and sealed position with respect to a frame defining the opening.
BACKGROUND OF THE INVENTION
It is generally known to provide a sliding door for van-type vehicles, where the door is moved along a fixed path generally parallel to the side wall of the van for a major portion of its opening and closing movement. Typically, the sliding door of a van-type vehicle moves generally into the plane of the door opening during a portion of its respective final closing and initial opening movements, so as to be flush with the side wall when fully closed, and moves generally out of the plane of the door opening during its initial opening movement so as to be along side of, and parallel to, the side wall of the vehicle in a position generally to the rear of the door opening when fully opened.
In van-type vehicles having sliding door systems, typically upper and lower forward guide rails or tracks are attached to the top and bottom portions, respectively, of the portal defining an opening through the wall of the vehicle, and a rear guide rail is attached to the exterior of the side wall, at an elevation approximately midway between the elevation of the upper and lower forward guide rails. The respective forward end portions of the various guide rails are curved inwardly with respect to the vehicle body, and bracket and roller assemblies are fastened to the respective upper and lower forward ends of the sliding door, as well as to an intermediate position at the rear end of the sliding door. The bracket and roller assemblies are slidingly supported in the guide rails to guide the door through its opening and closing movements.
Movement of the sliding door through a major portion of the rearward track or guide rail extending generally parallel to the side wall of the vehicle requires high displacement with low force to achieve the transitional movement, since only frictional resistance and gravity resistances due to changes in grade must be overcome. The movement of the sliding door through a forward portion of the guide rail track, curved inboard with respect to the vehicle, requires a low displacement with high force. The forces associated with an elastomeric weather seal surrounding the door opening must be overcome and an unlatched striker or fork bolt on the door must be engaged by a corresponding fork bolt or striker at the rear portion of the van body door opening. During manual operation, sliding van doors are typically moved with great momentum through the entire closing movement in order to ensure full weather strip compression and latch operation at the end of such movement.
A typical standard automotive door latch assembly includes a striker, which can take the form of a pin or a U-shaped member, fixedly mounted in the door frame to project into the door opening and into the path of movement of a latch member mounted on the edge of the door, which includes the fork bolt therein. The latch member is typically movably mounted with respect to the door and arranged so that as the door approaches its closed position, the latch member will engage the striker and further closing movement of the door will move the latch member into safety latch position with respect to the pin, sometimes referred to as the secondary latch position, and further closing movement of the door will move the latch member into a primary latch position with respect to the pin, which positively retains the door against movement away from its closed position. It is generally known for at least part of the movement of the latch member into latched relationship with the striker to be resisted by a spring, and many users of sliding doors of this type habitually close the door with far greater force than necessary to overcome the spring bias. Greater force is generally required in the case of sliding doors, such as those employed in vans, where movement of the door through the final phase of movement to the fully closed position must compress a resilient door seal which extends around the entire periphery of the door opening.
Power striker devices have been proposed to overcome the high force requirements to move sliding doors into the fully closed position. Typically, the power striker devices are mounted on the door frame for powered movement between an outboard ready position with respect to the vehicle centerline where the latch is engaged with the striker and an inboard holding position where the striker holds the latch door in the fully closed position. It is still required in such systems to use high force or momentum in order to ensure that the latch engages the striker in the primary latch position prior to movement into the fully closed position. When the door is open, the striker is located in its outboard ready position. After closing translation of the door is complete, the latch on the door engages the striker and latches the door to the striker while the striker is still in the outboard position. The door may engage a limit switch on the door frame when in the outboard position to actuate a drive motor which, through appropriate mechanism, drives the striker to its inboard position, such that the latched engagement between the door and striker enables the pin to drive the door to the fully closed position. With this arrangement, a closing force sufficient to engage the latch to the primary latch position with respect to the striker needs to be applied. The powered movement of the striker provides the force necessary to compress the door seal. If the striker and latch do not reach the primary latch position with respect to one another, the powered movement of the striker from its outboard position to its inboard position would not be sufficient to bring the door to the fully closed position in sealed engagement with the frame around the periphery of the door opening. In such cases, the user may be required to reopen and close the door repeatedly until the latch and striker are disposed in the primary latch position with respect to each other when in the outboard position.
SUMMARY OF THE INVENTION
It is desirable in the present invention to provide a power drive system for moving a movable closure along a fixed path between an open position and a closed position with respect to a portal defining a passage through a barrier, such that latch bolt operation and weather strip compression can be accomplished at the end of such movement without requiring high momentum during the closing movement. It is also desirable in the present invention to provide a power drive for moving a closure with low momentum between its fully open position and fully closed position, such that the closure is moved into the primary latch position in a controlled manner without requiring additional mechanisms for engaging and moving the striker from the secondary latch position through the final portion of closing movement into the primary latch position. It is also desirable to provide a smaller power drive package for installation in a vehicle. Providing a power drive system that does not leave the drive member under load is desirable so that the drive member is not subjected to stretching forces over long periods of time and so that the need for slack take-up mechanisms is eliminated. It is further desirable to provide a power drive system with high closing force and low momentum to move the latch mechanism into the primary position with the power drive motor.
The present invention

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronic control and method for power sliding van door... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronic control and method for power sliding van door..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic control and method for power sliding van door... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2923709

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.