Electronic component placement

Locks – Special application – For control and machine elements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S213000, C209S702000

Reexamination Certificate

active

06817216

ABSTRACT:

BACKGROUND
This invention relates to placing electronic components on circuit boards.
Electronic components can be supplied to component placement machines on carrier tapes spooled onto reels for removal by a pickup member and subsequent placement onto a destination circuit board. When the available inventory on a reel of component tape at a particular feeder is nearly exhausted, a machine operator might splice a leading end of a new component tape to the trailing end of the nearly exhausted tape, so that the machine will not run out of inventory and will continue to operate without interruption. Electronic component feeders, such as the one disclosed in Gfeller et al. (U.S. Pat. No. 6,157,870), have included a splice sensor for detecting a spice that connects two tapes together and for emitting, upon detection of that splice, a signal that allows for an automatic and synchronous take over of data associated with the connected tape.
Many component reels include a cover tape that overlays the components and is peeled away from the carrier tape before the components are picked from the carrier tape for assembly onto boards. In such cases, when splices are made, the carrier tape and the cover tape may both be spliced together at the connection.
SUMMARY OF THE INVENTION
One aspect of the invention features associating a component source with a destination circuit board in a component placement machine equipped with a component carrier tape having a first portion positioned to deliver components for subsequent placement onto the destination circuit board and a second portion attached to the first portion by a splice. The method includes sequentially removing a plurality of components from the component carrier tape for subsequent placement onto a destination circuit board, beginning with the first portion of tape, scanning a section of the component carrier tape associated with each removed component using a scanner that is responsive to the splice and, finally, creating an association between the destination circuit board and the second portion of tape in response to the scanner detecting the splice.
In certain embodiments, the scanner will be integral to a feeder to which the component carrier tape is coupled. In other embodiments, the scanner will be securely attached to a movable pick-head that is positionable to remove components from the component carrier tape. The scanner may be responsive to a property associated with the splice, for example, color, reflectivity, fluorescence, or even magnetic properties.
Additionally, in some cases, the method includes storing the identification data associated with the destination circuit board and the second portion of tape. A link can then be established between the identification data of the destination circuit board and the identification data of the second portion of tape. This link can be stored in a memory storage unit.
According to a second aspect of the invention, a method of tracking an association between a circuit board assembled with a component placement machine and a source identity of an electronic component of the circuit board includes coupling a first circuit board to the placement machine to receive an electronic component placed by the machine, mounting a reel loaded with a first length of component supply tape on the machine, attaching a leading end of a second length of component supply tape to a trailing end of the first length of component carrier tape with a splice connection, recording identities of the first length of tape, the second length of tape and the first circuit board, removing a component from the first length of tape and placing it on the first board, associating the identity of the first length of tape with the identity of the first board, detecting the splice connection, removing a component from the second length of tape for placement onto the first board and, finally, associating the identity of the second length of component carrier tape with the identity of the first board. In some cases, the method includes coupling a second circuit board to the machine to receive an electronic component placed by the machine, recording an identity of the second board, removing a component from the second length of tape for placement onto the second circuit board and associating the identity of the second length of tape to the identity of the second board.
The sequence of events may be modified in many ways as would be understood by one of skill in the art. For example, recording the identity of the first length of tape may occur before mounting the reel. Additionally, recording the identity of the second length of tape can occur before attaching the leading end of the second length of tape to the trailing end of the first length of tape. Furthermore, recording the identity of the first circuit board may be accomplished before coupling the first circuit board to the machine. Still further, removing the component from the first length of tape and associating the first length of tape with the first circuit board may occur before attaching the leading end of the second length of tape to the trailing end of the first length of tape. Also, associating the second length of tape to the first circuit board may occur in response to detecting the splice connection. Alternately, removing the component from the second length of tape after detecting the splice connection may trigger associating the second length of tape with the first circuit board.
In certain implementations the disclosed method includes associating the second length of tape to the first circuit board in response to placing a removed component from the second length of tape onto the first circuit board.
In some cases, the method includes activating an alarm or de-energizing the machine in response to detecting the splice connection if the identity of the second length of tape has not been recorded or has been recorded incorrectly.
Detecting the splice connection can be accomplished using a sensor that is integral to a feeder upon which the reel is mounted. Alternately, detecting the splice connection can be accomplished using a sensor that is securely fastened to a movable pickup member that is positionable for removing a component from the first length of tape and placing the removed component onto the first circuit board. Detecting the splice connection can include using an optical sensing element responsive to color to detect a color associated with the splice connection, or using an optical sensing element responsive to reflectivity to detect a reflectivity associated with the splice connection, or using an optical sensing element responsive to fluorescence to detect a fluorescence associated with the splice connection. Alternately, detecting the splice can include using a sensing element responsive to magnetism to detect a magnetic property associated with the splice connection.
According to yet another aspect of the invention, an apparatus includes a memory storage unit and a processing unit. The processing unit is configured to store in the memory storage unit identification data associated with a first circuit board, a first length of tape coupled to a placement machine to supply components thereto and a second length of tape having a leading end that is attached to a trailing end of the first length by a splice connection. The processor is also configured to create an association between the identification data of the second tape and the identification data of the first board in response to receiving a signal that indicates detection of the splice connection. In some instances, the recited apparatus includes a data entry device for receiving identification data associated with circuit boards and component carrier tape for processing in the processing unit and for storing in the memory unit. In some embodiments the processing unit is configured to store in memory data representing the association between the lengths of tape and the circuit boards. The processing unit can also be capable of creating the association after issuing an instruction to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronic component placement does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronic component placement, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic component placement will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3317807

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.