Electronic component handler

Classifying – separating – and assorting solids – Sorting special items – and certain methods and apparatus for... – Condition responsive means controls separating means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C209S602000, C209S643000, C209S919000, C209S932000, C324S757020, C324S1540PB

Reexamination Certificate

active

06204464

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates in general to apparatuses commonly called “handlers” which receive heaps of components made for use in electronic circuits, for example ceramic capacitors, and present them to a tester for parametric testing, and which subsequently sort the components according to test results. As used herein the term “component” refers to ceramic capacitors and any other electronic or electrical device having a form that allows it to be handled by this invention.
The handler according to this invention is a significant advance over the prior art. It eliminates manual seating of components for test purposes and manual sorting afterwards. It handles a greater quantity of components per unit time than prior art handlers. It handles components having multiple pairs of opposing terminals. It takes a randomly oriented heap of components, properly orients them, presents them to test contactors, and provides a means for sorting the tested parts individually according to test results.
Other advantages and attributes of this invention will be readily discernable upon a reading of the text hereinafter.
SUMMARY OF THE INVENTION
An object of this invention is to provide a handler for components having a plurality of opposing terminals.
A further object of this invention is to provide a component handler that has a significantly increased throughput over prior art handlers.
A further object of this invention is to provide a component handler that can receive a stream of randomly oriented components and automatically: (1) seat each component in a respective test seat properly oriented for testing, (2) simultaneously, electrically couple the plurality of terminals of each seated components to a tester, and (3) subsequently unseat and sort tested components according to test results.
A further object of this invention is to provide a component handler as described above which can create the stream of components from a heap of components.
A further object of this invention is to provide a component handler as described above which includes a loading mechanism to receive the stream of components and individually seat them in a ring of seats defined by a rotating carrier, the ring being concentric with the axis of rotation.
A further object of this invention is to provide a component handler as described above which can simultaneously present a plurality of seated components to a plurality of contactors.
These objects, and other objects expressed or implied in this specification, are accomplished by a component handler having a ring of uniform test seats or notches each for seating a single component; a drive for rotatingly indexing the ring; a loading station, in the path of the rotating ring, for receiving a stream of components and seating them in the ring; a plurality of test stations, in the path of the rotating ring, for electrically contacting each seated component sufficiently for testing same; and a plurality of ejection stations, in the path of the rotating ring, for ejecting the tested components from their test seats and sorting them. Preferably, the ring of test seats is defined by a circular wall projecting perpendicularly from a rotatable carrier plate, each test seat being a component-sized notch in the wall. The test seats are oriented to expose the components' opposing terminals on opposite sides of the wall. Beneath the carrier plate is a stationary plate abutting a planar bottom of the wall. The stationary plate defines a vacuum channel which runs beneath the wall and extends at least from the loading station to the last ejection station. Over the run of the vacuum channel it communicates with the test seats via respective vacuum ports defined by the wall and extending through the wall from the channel to the seats. The vacuum channel communicates with a vacuum source and communicates this vacuum to the test seats via the ports to keep the components seated.
In the preferred embodiment, the wall of test seats is inclined at an angle, preferably about 45 degrees, and is tangentially adjacent a co-planar feed wheel. As will be explained, the tangential adjacency is the “loading station.” The feed wheel defines a plurality of uniform singulating structures which are uniformly angularly spaced around the periphery of the wheel. The singulating structures guide randomly tumbling components into respective feed seats which are uniformly angularly spaced around the edge of the feed wheel. As will be explained, the components are individually transferred from a feed seat to a test seat at the loading station. Each singulating structure includes an open-top slot, running radial to the axis of wheel rotation, which slot starts a distance from the wheel margin and open ends into an aligned deeper cavity, a “feed seat,” which has an open side to the edge of the plate. The slot and feed seat together form a down facing, rounded “L” groove which serves to properly orient the components for transfer from the feed wheel to the carrier plate. The slots are preferably long enough to hold two or more components in line, but narrow enough to only admit them edge-wise. The components enter the slots by action of gravity, and assisted optionally by vibration of the feed wheel eventually fall from the slots into corresponding feed seats which can only hold one component each. Each feed seat only admits a component if it is properly oriented, namely standing on end with one of the component's terminal edges facing outward, i.e. facing the seat's open side. The handler also includes means for pouring components onto the feed wheel.
The seats of the carrier ring are uniformly, angularly, spaced and the ring is preferably incrementally rotated, the increment of rotation being the angular space between adjacent seats. There are a plurality of rolling contactors on both sides of the wall for coupling the components to a tester. All the contactors are readily replaceable. Tested components pass by an ejection manifold defined by a plurality of ejection holes which register with a set of seats each time the ring is rotated an increment. Ejection tubes are coupled to the ejection holes. The components are ejected from their seats by blasts of air from selectively actuated, respective pneumatic valves. The blast of air and gravity sends the ejected components through the tubes into sorting bins according to test results. The handler further includes a sensor for detecting components that were not ejected.


REFERENCES:
patent: 4354602 (1982-10-01), Miyoshi et al.
patent: 5568870 (1996-10-01), Utech
patent: 6025567 (2000-02-01), Brooks
patent: 6040705 (2000-03-01), Garcia et al.
patent: 427611 (1991-05-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronic component handler does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronic component handler, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic component handler will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2513105

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.