Electronic cockpit vision system

Communications: electrical – Aircraft alarm or indicating systems – Nonalarm flight indicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S973000

Reexamination Certificate

active

06714141

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a vision system. More specifically it relates to an electronic cockpit vision system to enable maintaining control of an aircraft and its systems when the cockpit has become invaded with dense and continuous smoke. The system must provide adequate information and feedback to perform continued flight and landing of the aircraft, while substantially simulating the normal visual operating conditions of the cockpit environment.
2. Description of the Prior Art
Dense and continuous smoke in the cockpit of an aircraft is a very serious condition normally resulting in the death of all aboard. Loss of the aircraft typically occurs within 6 to 12 minutes. Without reference to instruments or horizon a crew cannot maintain control for more than a very short time.
It can be appreciated that different forms of vision systems have been in use for years. Typically, a vision system is comprised of either the Emergency Visual Assurance System (EVAS) (U.S. Pat. No. 6,082,673 by Werjefelt) or SMOKESCOPE (U.S. Pat. No. 6,191,899 by Fuchs). More recent vision systems for smoke filled cockpits have been disclosed in U.S. Pat. No. 6,297,749 by Smith and U.S. patent application No. 20010010225 by Kind Code and Leo Keller.
Vision systems mounted in the helmet of the pilot have been used for low visibility flight conditions, such as night flying. Such a vision system is disclosed in U.S. Pat. No. 5,113,177 by Cohen. U.S. Pat. No. 5,296,854 discloses a pilot helmet with a visor display system that enables a pilot to view a video image of the external world in low visibility flight conditions. The vision systems designed for external low visibility flight conditions are not sufficient for the unique circumstances of vision interference that are presented by a smoke filled cockpit.
SMOKESCOPE (U.S. Pat. No. 6,191,899 by Fuchs) is a hand held tube, with a lens at each end, which is said to be an aid to viewing instruments in smoke. Its real use in landing is questionable in that it would give a narrow field of view. Being a hand held unit the SMOKESCOPE would demand a single-handed landing, negating pilot throttle control.
EVAS (U.S. Pat. No. 6,082,673 by Werjefelt) is a vision system that relies on a transparent tailored bag, which inflates with filtered smoke/air. The transparent bag displaces the smoke between a pilot's eyes, his primary flight instruments and the windshield. The bag contains air that has been substantially filtered to remove the smoke particles. The pilot presses his face and eyes against one end of the transparent bag, while the other end rests on the flight instruments and the windshield.
The main problem with this conventional vision system is that the EVAS is folded and packed in a container. It must be removed, placed on the glare shield and positioned, as it inflates, between the yoke and the instruments where it remains. It expands upwards to present a window to the pilot and another to the windshield. The same action must be then accomplished for the second pilot.
Another problem with this conventional vision system is that at a time in aircraft development when all emphasis is on reducing crew workload thru electronic systems, EVAS gives them more to do and at such a critical time during an emergency flight and landing. Thus, there is a need for a vision system that is easy to implement and operate.
Another problem with this conventional vision system is that when deployed EVAS gives a view of only the basic flight instruments and the flight path. EVAS does not address the need to view and adjust all the other cockpit controls required to keep an aircraft operating and flying. To view anything else it must be distorted and shoved around. The movement of the transparent bag requires a two handed job for a man with both hands already full. Controls on the center glare shield panel (typically auto pilot controls) are not viewable, nor are communications, transponder and radar on the center control console with EVAS in its normally deployed position. Furthermore, overhead panel controls cannot be viewed with EVAS normally deployed nor can floor mounted controls, such as the emergency landing gear release.
U.S. Pat. No. 6,297,749 by Smith is an emergency operating system for piloting an aircraft in a smoke filled cockpit. The system in the ‘749’ patent does disclose a facemask configured to surround a user's eyes and form an airtight seal. The facemask includes a screen viewable by the user for displaying critical flight operating information. A section of the display screen is clear plastic, which allows viewing of the cockpit through the facemask provided that there is only partial vision obscuring of the cockpit due to the smoke infiltration. An embodiment of the system has a hand-operated communication device that enables non-verbal communication with others. The communication device includes pre-recorded messages to be transmitted to an air traffic controller during an emergency situation. Another embodiment includes a respirator that is integral to the mask, which provides oxygen to the user.
The only video displays transmitted to the facemask by the ‘749’ patent system are the minimum aircraft operating system information and external aircraft images from an externally mounted video camera. Minimum aircraft operating system information can include air speed, altitude, compass heading, rolling angle, pitching angle, path angle, landing gear, flaps and fuel. Attitude could also be included, which is the orientation of an aircraft's axes relative to the horizon or some other reference line. The aircraft operating system information is transmitted from instrument display sources on the aircraft control panel to the facemask by a signal path.
Information that is displayed on the control panel is obtainable, but the system lacks the ability to transmit and display information from other parts of the smoke filled cockpit. The section of the facemask display screen that is clear plastic will provide viewing of the other areas of the cockpit, provided that there is minimal smoke infiltration and partial visibility exists within the cockpit. Unfortunately for the pilot, the clear plastic display screen ceases to be effective under severe smoke conditions when internal cockpit visibility is totally obscured. Viewing landing charts, printed information and location of hand controls is severely compromised or totally unavailable during full infiltration of smoke into the cockpit.
Performing the necessary hand movements on the flight controls when the controls and levers cannot be seen is a hazardous task. A good pilot knows by tactile perception the general location of the controls for adjusting the position of the wing flaps. Unfortunately the wing flap controls may be located in close proximity to other controls. Quick multiple movements must be performed to maintain control of the aircraft during an emergency landing situation. Cockpit vision is completely or substantially obscured by the smoke during this chaotic time. Hurried adjustment of the wrong control lever can result in disastrous consequences. A system that provided visual feedback for tactile hand movements would be most advantageous for the survival of the aircraft and pilots.
U.S. patent application No. 20010010225 by Leo Keller et al, discloses a similar facemask vision display system for displaying control panel information, a clear lens for interior viewing and an oxygen apparatus for smoke filled environments. Additionally, the system by Keller provides for Global Positioning System (GPS) data as part of the emergency flight data. The system can include a power supply independent of the normal power supply. As before, this prior art system by Keller does not provide sufficient and effective capability to view landing charts, printed information and the location of hand controls in a cockpit fully immersed in smoke, where the cockpit has essentially no internal visibility.
While these prior art devices may be

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronic cockpit vision system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronic cockpit vision system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic cockpit vision system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3273115

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.