Electricity: motive power systems – Automatic and/or with time-delay means – Movement – position – or limit-of-travel
Reexamination Certificate
1999-12-10
2001-03-06
Dang, Khanh (Department: 2837)
Electricity: motive power systems
Automatic and/or with time-delay means
Movement, position, or limit-of-travel
C318S467000
Reexamination Certificate
active
06198244
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to electrical and electronic system architecture and, more particularly, to an electrical and electronic system architecture for a seat of a vehicle.
2. Description of the Related Art
Vehicles, and in particular motor vehicles, contain many electrically controlled features. Many of these features are independent, while others are functionally integrated. Some of these features relate to the operation of the vehicle, including the power train and brake system, while others enhance occupant convenience, such as power seats, heated seats, remote keyless entry and automatic temperature control. Typically, the operation of these features is controlled by a functionally specific electronic controller. An example of an electronic controller is an engine controller that controls the engine and engine-related systems.
The electronic controller is typically a microprocessor having processing circuitry, input biasing and protection circuitry and output power switching capability. The electronic controller controls a function specific electrical device, such as an actuator or motor and receives data from sensors. The electrical device is electrically connected to the electronic controller with a conductor. A typical conductor is an insulated copper wire. Another type of conductor is a flexible printed circuit board. Depending on the locations of the electrical device or the electronic controller in the vehicle, a large quantity of parallel conductors, including individual wires, large bundles of wires, or flexible circuits may be routed throughout the vehicle.
As is well understood in the art, electrical/electronic system architecture refers to the organization and interrelationship of the electrical/electronic features of the vehicle. As more sophisticated electronically operated features are being utilized in vehicles, the electrical/electronic system architecture is likewise increasing in complexity. For example, a luxury-oriented vehicle could contain over thirty electronic controllers. This greatly increases the complexity and packaging requirements of the electrical/electronic system architecture. While an electrical/electronic system architecture based on functionally distributed electronic controllers worked well in the past, it is desirable to increase the flexibility given the popularity of electronically oriented features in today's motor vehicles. Thus, there is a need in the art for an electrical/electronic system architecture that is based on physically distributed electronic controllers to provide greater flexibility in the design and operation of electrical/electronic features within the vehicle.
SUMMARY OF THE INVENTION
Accordingly, the present invention is an electronic control assembly including a mechanism to be monitored and controlled by the electronic control assembly. The present invention also includes a plurality of electrical devices secured to the mechanism. Each of the electrical devices is designed to perform a specific function. The present invention also includes a plurality of sensors secured to the mechanism. The sensors provide feedback on a status of each of the electrical devices and the mechanism. A control unit receives instructions for each of the electrical devices. The control unit also receives the feedback from each of the sensors. From the instructions and feedback, the control unit creates command signals to be distributed to each of the electrical devices. A serial bus having a predetermined length is electrically connected to the electrical devices, the sensors and the control unit such that the control unit sends all of the command signals and receives all of the feedback signals over the serial bus.
One advantage of the present invention is that a mechanism, i.e., a seat assembly, is controlled remotely through the use of a control unit incorporating distributed architecture. Another advantage of the present invention is the ability to reduce the number of discrete control units from one for every feature to one for every mechanism such as a seat assembly. Still another advantage of the present invention is the ability to incorporate the use of a low cost serial bus in place of dedicated wire harnesses. Yet another advantage of the present invention is that the connections between the electrical devices and the control unit are such that a significant number of cut leads are eliminated, thus reducing costs associated with raw materials, inventory and labor during harness manufacturing. A further advantage of the present invention is that the present invention sharply reduces the volume and mass of the mechanism resulting in further economies.
Other features and advantages of the present invention will be readily appreciated as the same becomes better understood after reading the subsequent description when considered in connection with the accompanying drawings.
REFERENCES:
patent: 4467252 (1984-08-01), Takeda et al.
patent: 5004967 (1991-04-01), Ogasawara
Hayden Todd R.
Otte Philip F.
Pasha Brian D.
Dang Khanh
Delphi Technologies Inc.
Jones Richard A.
LandOfFree
Electronic architecture for controlling a motor vehicle seat does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electronic architecture for controlling a motor vehicle seat, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic architecture for controlling a motor vehicle seat will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2459778