Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...
Reexamination Certificate
2002-03-29
2004-10-12
Peng, Kuo-Liang (Department: 1712)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
At least one aryl ring which is part of a fused or bridged...
C528S027000, C528S025000, C526S310000, C526S279000, C568S061000, C568S021000, C556S482000, C524S543000
Reexamination Certificate
active
06803406
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to compounds containing electron donor electron acceptor, or adhesion promoting functionality, and a disulfide functionality.
BACKGROUND OF THE INVENTION
Curable compositions are used in the fabrication and assembly of semiconductor packages and microelectronic devices, such as in bonding integrated circuit chips to substrates, bonding circuit assemblies to printed wire boards, coating lead frames, underfilling the gap between chip and substrate, and encapsulating the chip and substrate assembly.
Substrates used in the fabrication of semiconductor packages can be metal, ceramic, or laminate. There are a number of electron donor/electron acceptor systems that are used in the industry, but curable compositions that in general have good performance may be deficient when used on one or more of these substrates. The addition of adhesion promoters or the use of curable resins that contain adhesion promoting capability would serve to correct this deficiency.
SUMMARY OF THE INVENTION
This invention is a compound comprising both disulfide functionality and electron donor functionality or alkoxy siloxane functionality. In a further embodiment this invention is a curable composition comprising a compound comprising both disulfide functionality and electron donor functionality, or electron acceptor functionality, or alkoxy siloxane functionality.
DETAILED DESCRIPTION OF THE INVENTION
The compound containing electron donor or electron acceptor functionality and disulfide will have the structure:
(E)
m
—Z—X—R—S—S—R′—X′—Z′—(E′)
n
in which m and n are an integers of 0 to 500, provided that m and n cannot both be 0; E and E′ are an electron donor or an electron acceptor; R and R′ are a direct bond, a linear or branched alkyl or alkenyl group, or a cyclic alkyl or alkenyl group, or an aromatic group; Z and Z′ are any organic moiety (polymeric, oligomeric, or monomeric); and X and X′ are a direct bond, an alkyl group, or a functionality selected from the group consisting of.
Exemplary electron donor groups include vinyl ether, vinyl silane, carbon to carbon double bonds attached to an aromatic ring and conjugated with the unsaturation in the aromatic ring, such as cinnamyl and styrenic groups. Exemplary electron acceptor groups are fumarates, maleates, maleimides and acrylates.
Exemplary Z groups include linear, branched or cyclic alkyl or alkenyl groups; aromatic groups, polyaromatic groups, heteroaromatic groups, siloxanes, polysiloxanes, polyethers, polyesters, polyurethanes, polysiloxanes, polycarbonates, polyacrylates, and poly(butadienes).
These compounds can be prepared by standard addition, condensation, and coupling reactions. As a first reaction example, a polymeric, oligomeric, or monomeric starting material containing both disulfide functionality and a reactive functionality can be reacted with a second starting material containing both electron donor or electron acceptor functionality and a complementary reactive functionality.
As a second reaction example, a starting material containing electron donor or electron acceptor functionality, disulfide functionality, and a reactive functionality can be reacted with a second starting material containing electron donor or electron acceptor functionality, disulfide functionality, and a complementary reactive functionality. Examples of reactive functionalities include hydroxyl and amino groups to be reacted with carboxyl and isocyanate groups.
As a third reaction example, two mercaptans containing electron donor or electron acceptor functionality can be reacted in a coupling reaction.
The compound containing alkoxy siloxane functionality and disulfide will have the structure:
in which m and n are 0 to 500, provided both m and n are not 0; R
1
and R
6
are a methyl or ethyl group; R
2
, R
3
, R
4
, and R
5
are a vinyl group, an aromatic group, or a linear or branched alkyl group, preferably of 1 to 4 carbons; R and R′, X and X′, and Z and Z′ are as described above; x and y are 0 or 1.
These compounds are prepared in similar reactions to those described above, except that the polymeric, oligomeric, or monomeric starting materials will contain siloxane functionality in place of the electron donor or electron acceptor functionality.
Suitable starting materials for making electron donors and electron acceptors include, but are not limited to, hydroxybutyl vinyl ether, cinnamyl alcohol, isoeugenol, 1,4-cyclohexane-dimethanol monovinyl ether, hydroxyoctyl maleate, aminobutyl fumarate, N-(6-hydroxyhexyl)maleimide and 3-isopropenyl-&agr;,&agr;-dimethylbenzyl isocyanate.
With this understanding, those skilled in the art will be able to devise reaction schemes for making a myriad of materials falling within the above generic formula.
In another embodiment, this invention is a curable composition, such as an adhesive, coating, or encapsulant, containing the inventive compounds. The composition can be in paste form prepared by milling or blending the components, or in film form, made by film making techniques known to those skilled in the art. The curable composition will include optionally a curing agent, and optionally a filler.
In another embodiment, this invention is a curable composition containing the inventive compounds blended with one or more other curable resins. Preferred other curable resins include vinyl ethers, vinyl silanes, compounds or resins containing vinyl or allyl functionality, thiol-enes (a thiol-ene within this specification and claims is a compound or resin that is the reaction product of a thiol and a compound having carbon to carbon unsaturation), compounds or resins containing cinnamyl or styrenic functionality, fumarates, maleates, acrylates, maleimides, epoxies and cyanate esters.
Other curable resins that can be blended with the inventive compounds include hybrid compounds or resins that contain both epoxy and cinnamyl or styrenic or vinyl ether functionality; hybrid compounds or resins that contain both vinyl silane and cinnamyl or styrenic functionality, and hybrid compounds or resins that contain both vinyl silane and epoxy functionality.
Within the structures in this specification and claims, C
36
represents a mixture of isomers of linear and branched alkyl chains having 36 carbon atoms that are derived from linoleic and oleic acids.
Suitable other curable compounds or resins having vinyl ether or allyl functionality for blending with the inventive compounds include:
These compounds can be prepared by synthetic routes and from starting materials known to those skilled in the art. Other compounds containing vinyl or allyl functionality are commercially available from BASF, ISP, or Aldrich.
Suitable other curable compounds or resins for blending with the inventive compounds and containing both styrenic or cinnamyl and vinyl ether functionality are disclosed in U.S. Pat. No. 6,307,001 and include:
These compounds can be prepared by synthetic routes and from starting materials known to those skilled in the art, or by the routes disclosed in the identified patent.
Suitable other curable compounds for blending with the inventive compounds and containing styrenic or cinnamyl functionality include:
These compounds can be prepared by synthetic routes and from starting materials known to those skilled in the art.
Suitable other curable compounds for blending with the inventive compounds and containing alkoxy silane functionality and electron donor or electron acceptor functionality include:
Suitable other curable compounds or resins for blending with the inventive compounds and containing styrenic or cinnamyl functionality with acrylate, maleate, fumarate or maleimide functionality, are disclosed in U.S. Pat. No. 6,300,456, and include:
These compounds can be prepared by synthetic routes and from starting materials known to those skilled in the art, or by the routes disclosed in U.S. Pat. No. 6,300,456.
Additional curable maleimides for blending with the inventive compounds are those disclosed in U.S. Pat. No
Gennaro Jane E.
National Starch and Chemical Investmnet Holding Corporation
Peng Kuo-Liang
LandOfFree
Electron donors, electron acceptors and adhesion promoters... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electron donors, electron acceptors and adhesion promoters..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electron donors, electron acceptors and adhesion promoters... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3281131