Electron bombarded active pixel sensor

Radiant energy – Photocells; circuits and apparatus – Photocell controlled circuit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S208100, C250S2140VT, C257S228000

Reexamination Certificate

active

06285018

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to devices and methods to image or detect a useful image at low light levels utilizing an active pixel sensor in an electron bombarded mode using a photocathode for detection or imaging at low light levels.
BACKGROUND OF THE INVENTION
Cameras that operate at low light levels have a number of significant applications in diverse areas. These include, among others, photographic, night vision, surveillance, and scientific uses. Modern night vision systems, for example, are rapidly transforming presently used direct view systems to camera based arrangements. These are driven by the continued advances in video display and processing. Video based systems allow remote display and viewing, recording, and image processing including fusion with other imagery such as from a forward looking infra-red sensor. Surveillance applications are also becoming predominately video based where camera size, performance, and low light level sensitivity are often critical. Scientific applications require cameras with good photon sensitivity over a large spectral range and high frame rates. These applications, and others, are driving the need for improved low light level sensors with direct video output.
Image sensing devices which incorporate an array of image sensing pixels are commonly used in electronic cameras. Each pixel produces an output signal in response to incident light. The signals are read out, typically one row at a time, to form an image. Cameras in the art have utilized Charge Coupled Devices (CCD) as the image sensor. Image sensors which incorporate an amplifier into each pixel for increased sensitivity are known as active pixel sensors (sometimes referred to herein as APS). Active pixel sensors are disclosed, for example in U.S. Pat. No. 5,789,774 issued Aug. 4, 1998 to Merrill; U.S. Pat. No. 5,631,704 issued May 20, 1997 to Dickinson et al; U.S. Pat. No. 5,521,639 issued May 28, 1996 to Tomura et al; U.S. Pat. No. 5,721,425 issued Feb. 24, 1998 to Merrill; U.S. Pat. No. 5,625,210 issued Apr. 29, 1997 to Lee et al; U.S. Pat. No. 5,614,744 issued Mar. 25, 1997 to Merrill; and U.S. Pat. No. 5,739,562 issued Apr. 14, 1998 to Ackland et al. Extensive background on active pixel sensor devices is contained in the paper by Fossum, “CMOS Image Sensors: Electronic Camera-On-A-Chip”, IEEE Transactions on Electron Devices, Vol. 44, No. 10, pp. 1689-1698, (1997) and the references therein.
In general, it is desirable to provide cameras which generate high quality images over a wide range of light levels including to extremely low light levels such as those encountered under starlight and lower illumination levels. In addition, the camera should have a small physical size and low electrical power requirements, thereby making portable, head-mounted, and other battery-operated applications practical. Active pixel sensor cameras meet the small size and low power requirements, but have poor low light level sensitivity with performance limited to conditions with 0.1 lux (twilight) or higher light levels.
Night vision cameras which operate under extremely low light levels are known in the art. The standard low light level cameras in use today are based on a Generation-III (GaAs photocathode) or Generation-II (multi-alkali photocathode) image intensifier fiber optically coupled to a CCD to form an Image Intensified CCD or ICCD camera. The scene to be imaged is focused by the input lens onto the photocathode faceplate assembly. The impinging light energy liberates photoelectrons from the photocathode to form an electron image. The electron image is proximity focused onto the input of the microchannel plate (MCP) electron multiplier, which intensifies the electron image by secondary multiplication while maintaining the geometric integrity of the image. The intensified electron image is proximity focused onto a phosphor screen, which converts the electron image back to a visible image, which typically is viewed through a fiber optic output window. A fiber optic taper or transfer lens then transfers this amplified visual image to a standard CCD sensor, which converts the light image into electrons which form a video signal. In these existing prior art ICCD cameras, there are five interfaces at which the image is sampled, and each interface degrades the resolution and adds noise to the signal of the ICCD camera. This image degradation which has heretofore not been avoidable, is a significant disadvantage in systems requiring high quality output. The ICCD sensor tends also to be large and heavy due to the fused fiber optic components. A surveillance system having a Generation-II MCP image intensifier tube is described, for example, in U.S. Pat. No. 5,373,320 issued Dec. 13, 1994 to Johnson et al. A camera attachment described in this patent converts a standard daylight video camera into a day
ight video camera.
In addition to image degradation resulting from multiple optical interfaces in the ICCD camera a further disadvantage is that the MCP is a relatively noisy amplifier. This added noise in the gain process further degrades the low light level image quality. The noise characteristics of the MCP can be characterized by the excess noise factor, Kf. Kf is defined as the ratio of the Signal-to-Noise power ratio at the input of the MCP divided by the Signal-to-Noise power ratio at the output of the MCP after amplification. Thus Kf is a measure of the degradation of the image Signal-to-Noise ratio due to the MCP gain process. Typical values for Kf are 4.0 for a Generation-III image intensifier. A low noise, high gain. MCP for use in Generation-III image intensifiers is disclosed in U.S. Pat. No. 5,268,612 issued Dec. 7, 1993 to Aebi et al.
An alternate gain mechanism is achieved by the electron-bombarded semiconductor (sometimes referred to herein as EBS) gain process. In this gain process, gain is achieved by electron multiplication resulting when the high velocity electron beam dissipates its energy in a semiconductor. The dissipated energy creates electron-hole pairs. For the semiconductor silicon one electron-hole pair is created for approximately every 3.6 electron-volt (eV) of incident energy. This is a very low noise gain process with Kf values close to 1. A Kf value of 1 would indicate a gain process with no added noise.
The electron-bombarded semiconductor gain process has been utilized in a focused electron bombarded hybrid photomultiplier tube comprising a photocathode, focusing electrodes and a collection anode consisting of a semiconductor diode disposed in a detector body as disclosed in U.S. Pat. No. 5,374,826 issued Dec. 20, 1994 to LaRue et al. and U.S. Pat. No. 5,475,227 issued Dec. 12, 1995 to LaRue. The disclosed hybrid photomultiplier tubes are highly sensitive but do not sense images.
The electron-bombarded semiconductor gain process has been used to address image degradation in the ICCD low light level camera. A back illuminated CCD is used as an anode in proximity focus with the photocathode to form an Electron Bombarded CCD (EBCCD). Photoelectrons from the photocathode are accelerated to and imaged in the back illuminated CCD directly. Gain is achieved by the low noise electron-bombarded semiconductor gain process. The EBCCD eliminates the MCP, phosphor screen, and fiber optics, and as a result both improved image quality and increased sensitivity can be obtained in a smaller sized camera. Significant improvement of the degraded resolution and high noise of the conventional image transfer chain has been realized with the EBCCD. An EBCCD is disclosed in U.S. Pat. No. 4,687,922 issued Aug. 18, 1987 to Lemonier. Extensive background on EBCCDs is contained in the paper by Aebi, et al, “Gallium Arsenide Electron Bombarded CCD Technology”, SPIE Vol. 3434, pp. 37-44, (1998) and references cited therein.
Optimum low light level EBCCD performance requires a specialized CCD. The CCD is required to be backside thinned to allow high electron-bombarded semiconductor gain. The CCD cannot be used in a frontside bombarded mode as used in a standard CCD came

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electron bombarded active pixel sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electron bombarded active pixel sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electron bombarded active pixel sensor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2439190

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.