Electric lamp and discharge devices – With luminescent solid or liquid material – Vacuum-type tube
Reexamination Certificate
1999-06-23
2001-11-27
Patel, Nimeshkumar D. (Department: 2879)
Electric lamp and discharge devices
With luminescent solid or liquid material
Vacuum-type tube
C313S496000, C313S497000, C313S1050CM, C313S1050CM, C313S1030CM, C313S422000
Reexamination Certificate
active
06323594
ABSTRACT:
This invention relates to electronic field emission display devices, such as matrix-addressed monochrome and full color flat panel displays in which light is produced by using cold-cathode electron field emissions to excite cathodoluminescent material. Such devices use electric fields to induce electron emissions, as opposed to elevated temperatures or thermionic cathodes as used in cathode ray tubes.
BACKGROUND OF THE INVENTION
Cathode ray tube (CRT) designs have been the predominant display technology, to date, for purposes such as home television and desktop computing applications. CRTs have drawbacks such as excessive bulk and weight, fragility, power and voltage requirements, electromagnetic emissions, the need for implosion and X-ray protection, analog device characteristics, and an unsupported vacuum envelope that limits screen size. However, for many applications, including the two just mentioned, CRTs have present advantages in terms of superior color resolution, contrast and brightness, wide viewing angles, fast response times, and low cost of manufacturing.
To address the inherent drawbacks of CRTs, such as lack of portability, alternative flat panel display design technologies have been developed. These include liquid crystal displays (LCDs), both passive and active matrix, electroluminescent displays (ELDs), plasma display panels (PDPs), and vacuum fluorescent displays (VFDs). While such flat panel displays have inherently superior packaging, the CRT still has optical characteristics that are superior to most observers. Each of these flat panel display technologies has its unique set of advantages and disadvantages, as will be briefly described.
The passive matrix liquid crystal display (PM-LCD) was one of the first commercially viable flat panel technologies, and is characterized by a low manufacturing cost and good x-y addressability. Essentially, the PM-LCD is a spatially addressable light filter that selectively polarizes light to provide a viewable image. The light source may be reflected ambient light, which results in low brightness and poor color control, or back lighting can be used, resulting in higher manufacturing costs, added bulk, and higher power consumption. PM-LCDs generally have comparatively slow response times, narrow viewing angles, a restricted dynamic range for color and gray scales, and sensitivity to pressure and ambient temperatures. Another issue is operating efficiency, given that at least half of the source light is generally lost in the basic polarization process, even before any filtering takes place. When back lighting is provided, the display continuously uses power at the maximum rate while the display is on.
Active matrix liquid crystal displays (AM-LCDs) are currently the technology of choice for portable computing applications. AM-LCDs are characterized by having one or more transistors at each of the display's pixel locations to increase the dynamic range of color and gray scales at each addressable point, and to provide for faster response times and refresh rates. Otherwise, AM-LCDs generally have the same disadvantages as PM-LCDs. In addition, if any AM-LCD transistors fail, the associated display pixels become inoperative. Particularly in the case of larger high resolution AM-LCDs, yield problems contribute to a very high manufacturing cost.
AM-LCDs are currently in widespread use in laptop computers and camcorder and camera displays, not because of superior technology, but because alternative low cost, efficient and bright flat panel displays are not yet available. The back lighted color AM-LCD is only about 3 to 5% efficient. The real niche for LCDs lies in watches, calculators and reflective displays. It is by no means a low cost and efficient display when it comes to high brightness full color applications.
Electroluminescent displays (ELDs) differ from LCDs in that they are not light filters. Instead, they create light from the excitation of phosphor dots using an electric field typically provided in the form of an applied AC voltage. An ELD generally consists of a thin-film electroluminescent phosphor layer sandwiched between transparent dielectric layers and a matrix of row and column electrodes on a glass substrate. The voltage is applied across an addressed phosphor dot until the phosphor “breaks down” electrically and becomes conductive. The resulting “hot” electrons resulting from this breakdown current excite the phosphor into emitting light.
ELDs are well suited for military applications since they generally provide good brightness and contrast, a very wide viewing angle, and a low sensitivity to shock and ambient temperature variations. Drawbacks are that ELDs are highly capacitive, which limits response times and refresh rates, and that obtaining a high dynamic range in brightness and gray scales is fundamentally difficult. ELDs are also not very efficient, particularly in the blue light region, which requires rather high energy “hot” electrons for light emissions. In an ELD, electron energies can be controlled only by controlling the current that flows after the phosphor is excited. A full color ELD having adequate brightness would require a tailoring of electron energy distributions to match the different phosphor excitation states that exist, which is a concept that remains to be demonstrated.
Plasma display panels (PDPs) create light through the excitation of a gaseous medium such as neon sandwiched between two plates patterned with conductors for x-y addressability. As with ELDs, the only way to control excitation energies is by controlling the current that flows after the excitation medium breakdown. DC as well as AC voltages can be used to drive the displays, although AC driven PDPs exhibit better properties. The emitted light can be viewed directly, as is the case with the red-orange PDP family. If significant UV is emitted, it can be used to excite phosphors for a full color display in which a phosphor pattern is applied to the surface of one of the encapsulating plates. Because there is nothing to upwardly limit the size of a PDP, the technology is seen as promising for large screen television or EOWV applications. Drawbacks are that the minimum pixel size is limited in a PDP, given the minimum volume requirement of gas needed for sufficient brightness, and that the spatial resolution is limited based on the pixels being three-dimensional and their light output being omnidirectional. A limited dynamic range and “cross talk” between neighboring pixels are associated issues.
Vacuum fluorescent displays (VFDs), like CRTs, use cathodoluminescence, vacuum phosphors, and thermionic cathodes. Unlike CRTs, to emit electrons a VFb cathode comprises a series of hot wires, in effect a virtual large area cathode, as opposed to the single electron gun used in a CRT. Emitted electrons can be accelerated through, or repelled from, a series of x and y addressable grids stacked one on top of the other to create a three dimensional addressing scheme. Character-based VFDs are very inexpensive and widely used in radios, microwave ovens, and automotive dashboard instrumentation. These displays typically use low voltage ZnO phosphors that have significant output and acceptable efficiency using 10 volt excitation.
A drawback to such VFDs is that low voltage phosphors are under development but do not currently exist to provide the spectrum required for a full color display. The color vacuum phosphors developed for the high-voltage CRT market are sulfur based. When electrons strike these sulfur based phosphors, a small quantity of the phosphor decomposes, shortening the phosphor lifetimes and creating sulfur bearing gases that can poison the thermionic cathodes used in a VFD. Further, the VH) thermionic cathodes generally have emission current densities that are not sufficient for use in high brightness flat panel displays with high voltage phosphors. Another and more general drawback is that the entire electron source must be left on all the time while the display is activated, resulting in low power efficiencies par
Harness & Dickey & Pierce P.L.C.
Haynes Mack
Patel Nimeshkumar D.
St. Clair Intellectual Property Consultants, Inc.
LandOfFree
Electron amplification channel structure for use in field... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electron amplification channel structure for use in field..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electron amplification channel structure for use in field... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2587735