Electromyographic examination glove

Apparel – Hand or arm coverings – Gloves

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C002S160000

Reexamination Certificate

active

06567990

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
REFERENCE TO SEQUENCE LISTING, TABLE, PROGRAM LISTING CD APPENDIX
Not Applicable
BACKGROUND OF THE INVENTION
The field to which this invention pertains is the pelvic floor and rectal muscle evaluation. Often, in evaluating incontinence, pelvic pain, or sexual dysfunction, an evaluation of a specific muscle of the pelvic floor or rectum is conducted. With female urinary incontinence, pelvic pain, or sexual dysfunction this evaluation is conducted on muscles that are palpated vaginally. With fecal and male urinary incontinence the evaluation is conducted on muscles that are palpated rectally.
When a muscle contracts it produces a small amount of electrical current. To determine the level to which a specific muscle is contracting, this current is read with a pair of electrical muscle activity sensing, electromyographic (EMG) surface electrodes. They serve as conductors and link the body to an EMG system, which displays electrical current intensity. Weak current as read by the electrodes implies poor muscle performance. If poor muscle performance is found it often becomes the focus of rehabilitation.
Today there are two styles of electrical sensing EMG electrodes used in this application, surface electrodes and probe electrodes. Surface electrodes are placed external to the area being evaluated, typically in the lower abdominal region. They are flat and are normally held onto the skin by conductive adhesive. Probe electrodes consist of non-metallic cylindrical bodies with exposed electrodes on the probe surface. They are placed vaginally or rectally. Vaginal probe electrodes are often referred to as “perineometers”. Both types have electronic lead wires that connect to an EMG system.
Surface electrodes, not being in contact with the muscle to be evaluated, provide a global reading of the entire pelvic floor or rectal area. With their use it is difficult to determine whether the readings are those of the desired muscle or those of neighboring muscles. The clinician must be very specific in directing the patient to contract a desired muscle and determine whether the reading is the result of it alone. For these reasons, surface electrode readings are subject to assumptions and can therefore be unreliable.
Since probes are used internally, closer to the desired muscle and not aimed at the entire region, they reduce the effects of readings from neighboring muscles. Probes therefore perform better than surface electrodes. Probe electrodes do however have some limitations.
Some limitations with probes arise from the fact that not all patients have the same cavity contour, muscle size and muscle location. Some cavities have more curvature than do others. The fixed shape of existing probes can therefore lead to readings of undesired neighboring muscles. Likewise, since pelvic floor and rectal muscles are not all located at the same depth from the cavity opening and muscle size can vary from patient to patient the clinician must judge the correct depth to insert the device to avoid readings of neighboring muscles.
Other problems with probes are that even when properly positioned for the desired muscle, it is impossible to determine if contractions of other muscles in the immediate region has also occurred affecting the EMG reading. Also, it impossible to determine whether the reading is from superficial or deep muscle activity. Finally, since the probe electrodes are cylindrical, encompassing the entire probe circumference, the clinician is unable to determine whether a muscle reading is coming from the patient's right or left side. Probe electrodes are more reliable than surface electrodes because they are closer to the electrical source, but like surface electrodes produce readings that lack detail. As with surface electrodes, a degree of speculation accompanies their readings.
Because they are somewhat more accurate than surface electrodes, probes electrodes are preferred. Probe electrodes however, are considerably more expensive than surface electrodes (approximately $30 compared to $1). They can be reused for the same patient over the life of treatment, but not being considered disposable due to cost, an initial patient evaluation is usually done with surface electrodes. Only after this initial evaluation warrants is a probe electrode typically prescribed.
What is needed in this field is an internal EMG device with a small electrode that can be reliably placed on a specific muscle, on a particular patient side (left or right). This same device needs to be able to distinguish whether a muscle reading is being influenced by the contractions of other muscles in the region and whether the muscular activity read is superficial or deep, preferably at a disposable cost.
BRIEF SUMMARY OF THE INVENTION
The objective of the invention was to create a pelvic floor/rectal electromyography (EMG) device whose readings were more reliable and interpretable than those of existing surface electrode and probe devices. The problems related to these existing devices are that clinicians cannot determine whether 1.) the electrode is contacting and therefore reading the desired muscle, 2.) the reading is being influenced by neighboring muscles, 3.) the reading is from the left or right side of the muscle and 4.) the reading is from superficial or deep muscles.
Because there is a difference in the anatomy of every patient and that pelvic floor muscles cannot be found by sight, the best way for a clinician to find a specific muscle on a given patient is by touch. Clinicians, typically Physical Therapists and Urogynecologists, are trained in muscular anatomy. They know haw to identify a muscle by its physical characteristics and by its proximity to other muscles and can sense whether muscle contractions are coming from superficial or deep muscle fibers.
Being the best method of muscle identification, it was desirable to incorporate a clinicians sense of touch and his or her knowledge of anatomy into a pelvic floor/rectal EMG device. Incorporating touch, a clinician can produce more reliable and more meaningful electronic signal readings. For these reasons, the Electromyographic Examination Glove was developed.
The device consists of EMG electrodes attached to the index finger of an examination glove. The active electrode is located at the tip of the index finger. This allows the clinician to simultaneously find the desired muscle using touch and place the active electrode directly on it. During the evaluation of the muscle's contractions, the clinician can therefore be certain that the readings being observed are those of the desired muscle. Also, by incorporating an exam glove, the inadvertent contractions of neighboring muscles can be felt and those readings ignored. A single electrode at the tip of the index finger also allows independent readings from both right and left sides of the muscle. Lastly, the clinician can feel whether the readings are coming from superficial or deep muscle fibers, which is knowledge that may alter the course of treatment.


REFERENCES:
patent: 4245656 (1981-01-01), Farr et al.
patent: 4542753 (1985-09-01), Brenman et al.
patent: 5067478 (1991-11-01), Berlant
patent: 5070862 (1991-12-01), Berlant
patent: 5867831 (1999-02-01), Husain
patent: D459816 (2002-07-01), Perricone

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electromyographic examination glove does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electromyographic examination glove, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electromyographic examination glove will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3043084

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.