Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Heterojunction
Patent
1995-03-21
1996-04-09
Mintel, William
Active solid-state devices (e.g., transistors, solid-state diode
Thin active physical layer which is
Heterojunction
257 17, 257 18, 257 21, 257 22, H01L 2906, H01L 310328, H01L 310336
Patent
active
055064183
ABSTRACT:
An electromagnetic wave detector formed of semiconductor materials includes at least one quantum well in which there is provided a fine layer of a material with a gap width that is smaller than that of the quantum well layer. For example, in the case of a GaAlAs/GaAs/GaAlAs, there is provision for a fine layer of InAs. In this way, the difference of energy levels between the two permitted levels is increased and detection of short wavelengths may be accomplished.
REFERENCES:
Daryanani et al, "High Quantum Efficiency Strained In GaAs/AlGaAs Quantum-Well Resonant-Cavity Inversion Channel Bipolar Field-Effect Phototransistor," Appl. Phys. Lett. 59 (26), 23 Dec. 1991, pp. 3464-3466.
Kock et al, "Integrated Wavelength-Selective GaAs/AlGaAs Multi-Quantum-Well Detectors," Semicond. Sci. Technol., vol. 6, No. 12 C, Dec. 1991, pp. C128-C129.
Applied Physics Letters, M. Sato, et al. vol. 56, No. 16, pp. 1555-1557, Apr. 16, 1992, New York, US, "Modulation of quantized levels of GaAs/AlGaAs quantum wells by InAs monomolecular plane insertion".
Semiconductor Science and Technology, Kock, et al. vol. 6, No. 12 C, C128-C129, Dec. 1991, London, GB, "Integrated wavelength-selective GaAs/GaAlAs multi-quantum-well detectors".
Applied Physics Letters, D. Daryanani, et al., vol. 59, No. 26, Dec. 23, 1992, New York, US, pp. 3464-3466, "High quantum efficiency strained InGaAs/AlGaAs quantum-well resonant-cavity inversion channel bipolar field-effect phototransistor".
SPIE, vol. 1361, "Physical Concepts of Materials for Novel Optoellectronic Device Applications I", Stradling, Nov. 1990, pp. 630-640, Novel narrow-gap semiconductor systems.
SPIE, vol. 1361, "Physical Concepts of Materials for Novel Optoelectronic Device Applications I" Sermage et al., Nov. 1990, pp. 131-135, Differentiation of the non radiative recombination properties of the two interfaces of MBE grown GaAs-GaAlAs quantum wells.
Applied Physics Letters, Zhou et al., vol. 54, No. 9, Feb. 27, 1989, New York, US, pp. 855-856, "Intersubband absorption in strained In (x) Ga (1-x)As/Al(O.4)Ga(0.6)As (0=x=0.15) multiquantum wells".
Bois Philippe
Grandjean Nicolas
Massies Jean
Neu Gerard
Rosencher Emmanuel
"Thomson-CSF"
Mintel William
LandOfFree
Electromagnetic wave detector with quantum well structure does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electromagnetic wave detector with quantum well structure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electromagnetic wave detector with quantum well structure will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-140670