Electromagnetic mode conversion in photonic crystal...

Optical waveguides – With optical coupler – Particular coupling function

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S126000, C385S127000

Reexamination Certificate

active

06563981

ABSTRACT:

BACKGROUND
This invention relates to the field of dielectric optical waveguides and optical telecommunications.
Optical waveguides guide optical signals to propagate along a preferred path or paths. Accordingly, they can be used to carry optical signal information between different locations and thus they form the basis of optical telecommunication networks. The most prevalent type of optical waveguide is an optical fiber based on index guiding. Such fibers include a core region extending along a waveguide axis and a cladding region surrounding the core about the waveguide axis and having a refractive index less than that of the core region. Because of the index-contrast, optical rays propagating substantially along the waveguide axis in the higher-index core can undergo total internal reflection (TIR) from the core-cladding interface. As a result, the optical fiber guides one or more modes of electromagnetic (EM) radiation to propagate in the core along the waveguide axis. The number of such guided modes increases with core diameter. Notably, the index-guiding mechanism precludes the presence of any cladding modes lying below the lowest-frequency guided mode. Almost all index-guided optical fibers in use commercially are silica-based in which one or both of the core and cladding are doped with impurities to produce the index contrast and generate the core-cladding interface. For example, commonly used silica optical fibers have indices of about 1.45 and index contrasts of up to about 2-3% for wavelengths in the range of 1.5 microns.
Signals traveling down an optical fiber slowly attenuate, necessitating periodic amplification and/or regeneration, typically every 50-100 km. Such amplifiers are costly, and are especially inconvenient in submarine cables where space, power sources, and maintenance are problematic. Losses for silica-based optical fibers have been driven down to about 0.2 dB/km, at which point they become limited by the Rayleigh scattering processes. Rayleigh scattering results from microscopic interactions of the light with the medium at a molecular scale and is proportional to &ohgr;
4
&rgr;, where &ohgr; is the light frequency and &rgr; is the material density, along with some other constants of the material.
In addition to loss, signals propagating along an optical fiber may also undergo nonlinear interactions. In an ideal linear material, light does not interact with itself—this is what allows a fiber to carry multiple communications channels simultaneously in separate wavelengths (wavelength-division multiplexing, or WDM), without interactions or crosstalk. Any real optical medium (even vacuum), however, possesses some nonlinear properties. Although the nonlinearities of silica and other common materials are weak, they become significant when light is propagated over long distances (hundreds or thousands of kilometers) or with high powers. Such nonlinear properties have many undesirable effects including: self/cross phase modulation (SPM/XPM), which can cause increased pulse broadening and limit bitrates; and afour-wave mixing (FWM) and stimulated Raman/Brillouin scattering (SRS/SBS), which induce crosstalk between different wavelength channels and can limit the number of achievable channels for WDM. Such nonlinearities are a physical property of the material in the waveguide and typically scale with the density of the waveguide core.
Typically, optical fibers used for long-distance communications have a core small enough to support only one fundamental mode in a desired frequency range, and therefore called “single-mode” fibers. Single mode operation is necessary to limit signal degradation caused by modal dispersion, which occurs when a signal can couple to multiple guided modes having different speeds. Nonetheless, the name “single-mode” fiber is something of a misnomer. Actually, single-mode fibers support two optical modes, consisting of the two orthogonal polarizations of light in the fiber. The existence and similarity of these two modes is the source of a problem known as polarization-mode dispersion (PMD). An ideal fiber would possess perfect rotational symmetry about its axis, in which case the two modes would behave identically (they are “degenerate”) and cause no difficulties. In practice, however, real fibers have some acircularity when they are manufactured, and in addition there are environmental stresses that break the symmetry. This has two effects, both of which occur in a random and unpredictable fashion along the fiber: first, the polarization of light rotates as it propagates down the fiber; and second, the two polarizations travel at different speeds. Thus, any transmitted signal will consist of randomly varying polarizations which travel at randomly varying speeds, resulting in PMD: pulses spread out over time, and will eventually overlap unless bit rate and/or distance is limited. There are also other deleterious effects, such as polarization-dependent loss. Although there are other guided modes that have full circular symmetry, and thus are truly “singlet” modes, such modes are not the fundamental modes and are only possible with a core large enough to support multiple modes. In conventional optical fibers, however, the PMD effects associated with the fundamental mode of a small core supporting only a “single-mode” are far preferable to the effects of modal dispersion in a larger core multi-mode fiber.
Another problem with directing optical signals along an optical waveguide is the presence of chromatic or group-velocity dispersion in that waveguide. Such dispersion is a measure of the degree to which different frequencies of the guided radiation propagate at different speeds (i.e., group velocities) along the waveguide axis. Because any optical pulse includes a range of frequencies, dispersion causes an optical pulse to spread in time as its different frequency components travel at different speeds. With such spreading, neighboring pulses or “bits” in an optical signal may begin to overlap and thereby degrade signal detection. Thus, absent compensation, dispersion over an optical transmission length places an upper limit on the bit-rate or bandwidth of an optical signal.
Chromatic dispersion includes two contributions: material dispersion and waveguide dispersion. Material dispersion comes from the frequency-dependence of the refractive index of the material constituents of the optical waveguide. Waveguide dispersion comes from frequency-dependent changes in the spatial distribution of a guided mode. As the spatial distribution of a guided modes changes, it sample different regions of the waveguide, and therefore “sees” a change in the average index of the waveguide that effectively changes its group velocity. In conventional silica optical fibers, material dispersion and waveguide dispersion cancel each other out at approximately 1310 nm producing a point of zero dispersion. Silica optical fibers have also been modified to move the zero dispersion point to around 1550 nm, which corresponds to a minimum in material absorption for silica.
Unfortunately, while operating at zero dispersion minimizes pulse spreading, it also enhances nonlinear interactions in the optical fiber such as four wave mixing (FWM) because different frequencies remain phase-matched over large distances. This is particularly problematic in wavelength-division multiplexing (WDM) systems where multiple signals are carried at different wavelengths in a common optical fiber. In such WDM systems, FWM introduces cross talk between the different wavelength channels as described above. To address this problem, WDM systems transmit signals through optical fibers that introduce a sufficient dispersion to minimize cross-phase modulation, and thereafter transmits the signals through a “dispersion compensating fiber” (DCF), to cancel the original dispersion and minimize pulse spreading in the compensated signal. Unfortunately, aggregate interactions between the dispersion and other nonlinear processes such as self-phase modulation can complicate dispersion compensation.
Ano

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electromagnetic mode conversion in photonic crystal... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electromagnetic mode conversion in photonic crystal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electromagnetic mode conversion in photonic crystal... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3013049

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.